A platform for research: civil engineering, architecture and urbanism
Soil Erosion and Spatio-temporal Variations in Huangshui River Basin Based on MODIS and Landsat Data
[Objective] The spatio-temporal distribution and variation characteristics of soil erosion in the Huangshui River basin in the upstream region of the Yellow River were analyzed in order to provide basic data and a basis for decision-making in relation to soil and water conservation and erosion prevention. [Methods] Based on MODIS and Landsat images, precipitation, population density, and the economy in 2000 and 2018, we used low altitude UAV remote sensing, the RUSLE model, and geostatistics to calculate, validate, and analyze the spatio-temporal variability of a soil erosion model in the Huangshui River basin. [Results] ① The average soil erosion modulus of Huangshui River basin in 2000 was 477.81 t/(km2·yr), and the percentage of the area with slight erosion was 72.06%. The percentage of area with moderate, strong, and severe erosion was 3.46%. Mild and moderate erosion areas were mainly located in the mountains and wastelands in the Northern Qilian Mountains, the Central Daban Mountains, and the Southern Laji Mountains, with high altitude and low vegetation coverage. ② In 2018, the average soil erosion modulus of the Huangshui River basin was 1 625.30 t/(km2·yr). The percentage of area with mild erosion was 55.38%, and the percentage of area with moderate, strong, and severe erosion was 21.26%. The area of moderate erosion was mainly located in the urban agglomeration area and where river beaches were located in the southeast part of the study area. The strong erosion and extra-strong erosion areas were sporadically distributed in bare areas in the Qilian Mountains and the Daban Mountains. ③ From 2000 to 2018, the area of slight erosion decreased by 16.68%, the area of moderate erosion increased by 8.15%, the area of strong erosion increased by 5.60%, and the area of severe erosion increased by 4.05%. The region with increasing erosion was mainly located in the bare mountains and urban areas. [Conclusion] Low-altitude UAV remote sensing technology can effectively validate the calculation results of the regional soil erosion model. Soil erosion in the Huangshui River basin has be accelerated over time, and showed great spatial differences. The spatial pattern of soil erosion intensity has evolved from mild, slight to moderate in the Qilian Mountains and the Daban Mountains. This evolution tendency is related to the warmer-wetter climate and intensified human activity.
Soil Erosion and Spatio-temporal Variations in Huangshui River Basin Based on MODIS and Landsat Data
[Objective] The spatio-temporal distribution and variation characteristics of soil erosion in the Huangshui River basin in the upstream region of the Yellow River were analyzed in order to provide basic data and a basis for decision-making in relation to soil and water conservation and erosion prevention. [Methods] Based on MODIS and Landsat images, precipitation, population density, and the economy in 2000 and 2018, we used low altitude UAV remote sensing, the RUSLE model, and geostatistics to calculate, validate, and analyze the spatio-temporal variability of a soil erosion model in the Huangshui River basin. [Results] ① The average soil erosion modulus of Huangshui River basin in 2000 was 477.81 t/(km2·yr), and the percentage of the area with slight erosion was 72.06%. The percentage of area with moderate, strong, and severe erosion was 3.46%. Mild and moderate erosion areas were mainly located in the mountains and wastelands in the Northern Qilian Mountains, the Central Daban Mountains, and the Southern Laji Mountains, with high altitude and low vegetation coverage. ② In 2018, the average soil erosion modulus of the Huangshui River basin was 1 625.30 t/(km2·yr). The percentage of area with mild erosion was 55.38%, and the percentage of area with moderate, strong, and severe erosion was 21.26%. The area of moderate erosion was mainly located in the urban agglomeration area and where river beaches were located in the southeast part of the study area. The strong erosion and extra-strong erosion areas were sporadically distributed in bare areas in the Qilian Mountains and the Daban Mountains. ③ From 2000 to 2018, the area of slight erosion decreased by 16.68%, the area of moderate erosion increased by 8.15%, the area of strong erosion increased by 5.60%, and the area of severe erosion increased by 4.05%. The region with increasing erosion was mainly located in the bare mountains and urban areas. [Conclusion] Low-altitude UAV remote sensing technology can effectively validate the calculation results of the regional soil erosion model. Soil erosion in the Huangshui River basin has be accelerated over time, and showed great spatial differences. The spatial pattern of soil erosion intensity has evolved from mild, slight to moderate in the Qilian Mountains and the Daban Mountains. This evolution tendency is related to the warmer-wetter climate and intensified human activity.
Soil Erosion and Spatio-temporal Variations in Huangshui River Basin Based on MODIS and Landsat Data
Du Mei (author) / Zhao Jianyun (author) / Yang Jing (author) / Ding Yuanyuan (author) / Liu Wenhui (author) / Li Guorong (author) / Wang Zushun (author) / Zhao Lijiang (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2022
|Study on Failure Mechanism and Stability of Loess Slope in Huangshui River Basin
British Library Conference Proceedings | 2013
|Study on Failure Mechanism and Stability of Loess Slope in Huangshui River Basin
Trans Tech Publications | 2013
|Spatio-Temporal Variations in Farmland Water Conditions in the Yanhe River Basin
DOAJ | 2019
|