A platform for research: civil engineering, architecture and urbanism
Distributed Deep Features Extraction Model for Air Quality Forecasting
Several studies in environmental engineering emphasize the importance of air quality forecasting for sustainable development around the world. In this paper, we studied a new approach for air quality forecasting in Busan metropolitan city. We proposed a convolutional Bi-Directional Long-Short Term Memory (Bi-LSTM) autoencoder model trained using a distributed architecture to predict the concentration of the air quality particles (PM2.5 and PM10). The proposed deep learning model can automatically learn the intrinsic correlation among the pollutants in different location. Also, the meteorological and the pollution gas information at each location are fully utilized, which is beneficial for the performance of the model. We used multiple one-dimension convolutional neural network (CNN) layers to extract the local spatial features and a stacked Bi-LSTM layer to learn the spatiotemporal correlation of air quality particles. In addition, we used a stacked deep autoencoder to encode the essential transformation patterns of the pollution gas and the meteorological data, since they are very important for providing useful information that can significantly improve the prediction of the air quality particles. Finally, in order to reduce the training time and the resource consumption, we used a distributed deep leaning approach called data parallelism, which has never been used to tackle the problem of air quality forecasting. We evaluated our approach with extensive experiments based on the data collected in Busan metropolitan city. The results reveal the superiority of our framework over ten baseline models and display how the distributed deep learning model can significantly improve the training time and even the prediction accuracy.
Distributed Deep Features Extraction Model for Air Quality Forecasting
Several studies in environmental engineering emphasize the importance of air quality forecasting for sustainable development around the world. In this paper, we studied a new approach for air quality forecasting in Busan metropolitan city. We proposed a convolutional Bi-Directional Long-Short Term Memory (Bi-LSTM) autoencoder model trained using a distributed architecture to predict the concentration of the air quality particles (PM2.5 and PM10). The proposed deep learning model can automatically learn the intrinsic correlation among the pollutants in different location. Also, the meteorological and the pollution gas information at each location are fully utilized, which is beneficial for the performance of the model. We used multiple one-dimension convolutional neural network (CNN) layers to extract the local spatial features and a stacked Bi-LSTM layer to learn the spatiotemporal correlation of air quality particles. In addition, we used a stacked deep autoencoder to encode the essential transformation patterns of the pollution gas and the meteorological data, since they are very important for providing useful information that can significantly improve the prediction of the air quality particles. Finally, in order to reduce the training time and the resource consumption, we used a distributed deep leaning approach called data parallelism, which has never been used to tackle the problem of air quality forecasting. We evaluated our approach with extensive experiments based on the data collected in Busan metropolitan city. The results reveal the superiority of our framework over ten baseline models and display how the distributed deep learning model can significantly improve the training time and even the prediction accuracy.
Distributed Deep Features Extraction Model for Air Quality Forecasting
Axel Gedeon Mengara Mengara (author) / Younghak Kim (author) / Younghwan Yoo (author) / Jaehun Ahn (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Attention-Based Distributed Deep Learning Model for Air Quality Forecasting
DOAJ | 2022
|Forecasting air quality time series using deep learning
Taylor & Francis Verlag | 2018
|Forecasting vulnerability of deep extraction level excavations to draw-induced cave loads
DOAJ | 2019
|