A platform for research: civil engineering, architecture and urbanism
Quantification and Proxy Indicators of the Carbon Pool in Urban Tree Litterfall: A Case Study of Urban Green Spaces in Beijing
As major carbon (C) pools in cities, urban green spaces play a crucial role in reducing atmospheric carbon. To determine the importance of litterfall C storage in urban green spaces, we selected the leaf area index (LAI) as a proxy indicator for litterfall C density (LCD), and established a log-linear regression model between LCD and LAI to predict the annual litterfall C pool in large-scale urban green spaces using Sentinel-2 satellite remote sensing data. Forty-five sample units were randomly selected in typical urban green spaces in Beijing, China. A high-temperature combustion method was used to measure the LCD of the sampling units, and stepwise linear regression was used to filter the proxy indicator for LCD. The annual litterfall C pool in regions within the Fifth Ring Road was also estimated with inversion using remote sensing data. From 2015 to 2021, the estimated annual litterfall C pool was in the range of 4.5–5.8 × 1010 g, i.e., approximately 18.9% of the total C storage recorded for the urban green space, which was far greater than that observed in forest ecosystems. We concluded that the litterfall C pool in urban green spaces is seriously underestimated, and that urban tree litterfall has the potential to reduce greenhouse gas emissions if used as a carbon-neutral resource.
Quantification and Proxy Indicators of the Carbon Pool in Urban Tree Litterfall: A Case Study of Urban Green Spaces in Beijing
As major carbon (C) pools in cities, urban green spaces play a crucial role in reducing atmospheric carbon. To determine the importance of litterfall C storage in urban green spaces, we selected the leaf area index (LAI) as a proxy indicator for litterfall C density (LCD), and established a log-linear regression model between LCD and LAI to predict the annual litterfall C pool in large-scale urban green spaces using Sentinel-2 satellite remote sensing data. Forty-five sample units were randomly selected in typical urban green spaces in Beijing, China. A high-temperature combustion method was used to measure the LCD of the sampling units, and stepwise linear regression was used to filter the proxy indicator for LCD. The annual litterfall C pool in regions within the Fifth Ring Road was also estimated with inversion using remote sensing data. From 2015 to 2021, the estimated annual litterfall C pool was in the range of 4.5–5.8 × 1010 g, i.e., approximately 18.9% of the total C storage recorded for the urban green space, which was far greater than that observed in forest ecosystems. We concluded that the litterfall C pool in urban green spaces is seriously underestimated, and that urban tree litterfall has the potential to reduce greenhouse gas emissions if used as a carbon-neutral resource.
Quantification and Proxy Indicators of the Carbon Pool in Urban Tree Litterfall: A Case Study of Urban Green Spaces in Beijing
Yujuan Cao (author) / Xinyu Li (author) / Yanming Li (author) / Jia Guo (author) / Yali Qi (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 2013
|Urban green spaces, their spatial pattern, and ecosystem service value: The case of Beijing
Online Contents | 2016
|Nitrogen and carbon export from urban areas through removal and export of litterfall
Online Contents | 2015
|