A platform for research: civil engineering, architecture and urbanism
Removal of Antimony Species, Sb(III)/Sb(V), from Water by Using Iron Coagulants
Antimony (Sb) is classified as a toxic pollutant of high priority, because its effects on human health (toxicity) are similar to those of arsenic. However, unlike arsenic, the removal of antimony from polluted waters is still not well understood. In the present study the removal of common antimony species in water, namely, Sb(III) and Sb(V), was investigated by the addition of iron-based coagulants. The applied coagulants were Fe(II), Fe(III), and equimolar mixed Fe(II)/Fe(III) salts and the experiments were performed with realistic antimony concentrations in the range 10–100 μg/L, by using artificially polluted tap water solutions. Sb(III) removal by Fe(III) provided better adsorption capacity at a residual concentration equal to the drinking water regulation limit of 5 μg/L, that is, Q5 = 4.7 μg Sb(III)/mg Fe(III) at pH 7, which was much higher than the value achieved by the addition of Fe(II) salts, that is, Q5 = 0.45 μg Sb(III)/mg Fe(II), at the same pH value. Similarly, Sb(V) was more efficiently removed by Fe(III) addition, than by the other examined coagulants. However, Fe(III) uptake capacity for Sb(V) was found to be significantly lower, that is, Q5 = 1.82 μg Sb(V)/mg Fe(III), than the corresponding value for Sb(III). The obtained results can give a realistic overview of the efficiency of conventionally used iron-based coagulants and of their mixture for achieving Sb concentrations below the respective drinking water regulation limit and therefore, they can be subsequently applied for the designing of real-scale water treatment units.
Removal of Antimony Species, Sb(III)/Sb(V), from Water by Using Iron Coagulants
Antimony (Sb) is classified as a toxic pollutant of high priority, because its effects on human health (toxicity) are similar to those of arsenic. However, unlike arsenic, the removal of antimony from polluted waters is still not well understood. In the present study the removal of common antimony species in water, namely, Sb(III) and Sb(V), was investigated by the addition of iron-based coagulants. The applied coagulants were Fe(II), Fe(III), and equimolar mixed Fe(II)/Fe(III) salts and the experiments were performed with realistic antimony concentrations in the range 10–100 μg/L, by using artificially polluted tap water solutions. Sb(III) removal by Fe(III) provided better adsorption capacity at a residual concentration equal to the drinking water regulation limit of 5 μg/L, that is, Q5 = 4.7 μg Sb(III)/mg Fe(III) at pH 7, which was much higher than the value achieved by the addition of Fe(II) salts, that is, Q5 = 0.45 μg Sb(III)/mg Fe(II), at the same pH value. Similarly, Sb(V) was more efficiently removed by Fe(III) addition, than by the other examined coagulants. However, Fe(III) uptake capacity for Sb(V) was found to be significantly lower, that is, Q5 = 1.82 μg Sb(V)/mg Fe(III), than the corresponding value for Sb(III). The obtained results can give a realistic overview of the efficiency of conventionally used iron-based coagulants and of their mixture for achieving Sb concentrations below the respective drinking water regulation limit and therefore, they can be subsequently applied for the designing of real-scale water treatment units.
Removal of Antimony Species, Sb(III)/Sb(V), from Water by Using Iron Coagulants
Manassis Mitrakas (author) / Zoi Mantha (author) / Nikos Tzollas (author) / Stelios Stylianou (author) / Ioannis Katsoyiannis (author) / Anastasios Zouboulis (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
An Effective Method to Remove Antimony in Water by Using Iron-Based Coagulants
DOAJ | 2019
|Wiley | 1946
|Recovery and Reuse of Iron Coagulants in Water Treatment
Wiley | 1978
|Techno-Economic Evaluation of Iron and Aluminum Coagulants on Se(IV) Removal
DOAJ | 2020
|