A platform for research: civil engineering, architecture and urbanism
Tropospheric ozone data assimilation in the NASA GEOS Composition Forecast modeling system (GEOS-CF v2.0) using satellite data for ozone vertical profiles (MLS), total ozone columns (OMI), and thermal infrared radiances (AIRS, IASI)
The NASA Goddard Earth Observing System Composition Forecast system (GEOS-CF) provides global near-real-time analyses and forecasts of atmospheric composition. The current version of GEOS-CF builds on the GEOS general circulation model with Forward Processing assimilation of meteorological data (GEOS-FP) and includes detailed GEOS-Chem tropospheric and stratospheric chemistry. Here we add 3D variational data assimilation in GEOS-CF to assimilate satellite observations of ozone including MLS vertical profiles, OMI total columns, and AIRS and IASI hyperspectral 9.6 μ m radiances. We focus our evaluations on the troposphere. We find that the detailed tropospheric chemistry in GEOS-CF significantly improves the simulated background ozone fields relative to previous versions of the GEOS model, allowing for specification of smaller background errors in assimilation and resulting in smaller assimilation increments to correct the simulated ozone. Assimilation increments are largest in the upper troposphere and are consistent between satellite data sets. The OMI and MLS ozone data generally provide more information than the AIRS and IASI radiances except at high latitudes where the radiances provide more information. Comparisons to independent ozonesonde and aircraft (ATom-4) observations for 2018 show significant GEOS-CF improvement from the assimilation, particularly in the extratropical upper troposphere.
Tropospheric ozone data assimilation in the NASA GEOS Composition Forecast modeling system (GEOS-CF v2.0) using satellite data for ozone vertical profiles (MLS), total ozone columns (OMI), and thermal infrared radiances (AIRS, IASI)
The NASA Goddard Earth Observing System Composition Forecast system (GEOS-CF) provides global near-real-time analyses and forecasts of atmospheric composition. The current version of GEOS-CF builds on the GEOS general circulation model with Forward Processing assimilation of meteorological data (GEOS-FP) and includes detailed GEOS-Chem tropospheric and stratospheric chemistry. Here we add 3D variational data assimilation in GEOS-CF to assimilate satellite observations of ozone including MLS vertical profiles, OMI total columns, and AIRS and IASI hyperspectral 9.6 μ m radiances. We focus our evaluations on the troposphere. We find that the detailed tropospheric chemistry in GEOS-CF significantly improves the simulated background ozone fields relative to previous versions of the GEOS model, allowing for specification of smaller background errors in assimilation and resulting in smaller assimilation increments to correct the simulated ozone. Assimilation increments are largest in the upper troposphere and are consistent between satellite data sets. The OMI and MLS ozone data generally provide more information than the AIRS and IASI radiances except at high latitudes where the radiances provide more information. Comparisons to independent ozonesonde and aircraft (ATom-4) observations for 2018 show significant GEOS-CF improvement from the assimilation, particularly in the extratropical upper troposphere.
Tropospheric ozone data assimilation in the NASA GEOS Composition Forecast modeling system (GEOS-CF v2.0) using satellite data for ozone vertical profiles (MLS), total ozone columns (OMI), and thermal infrared radiances (AIRS, IASI)
Makoto M Kelp (author) / Christoph A Keller (author) / Krzysztof Wargan (author) / Bryan M Karpowicz (author) / Daniel J Jacob (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Retrievals of Total and Tropospheric Ozone From GOSAT Thermal Infrared Spectral Radiances
Online Contents | 2012
|Space-time modeling of vertical ozone profiles
Online Contents | 2003
|Space–time modeling of vertical ozone profiles
Wiley | 2003
|Undulation and anomaly estimation using Geos-3 altimeter data without precise satellite orbits
Online Contents | 1977
|