A platform for research: civil engineering, architecture and urbanism
A Conceptual Framework for Implementing Lean Construction in Infrastructure Recovery Projects
Natural hazards can have substantial destructive impacts on the built environment. Providing effective services in disaster areas is heavily reliant on maintaining or replacing infrastructure; thus, post-disaster reconstruction of infrastructure has attracted growing attention. Due to the complex and dynamic nature of infrastructure recovery projects, contractor companies engaged in this work have typically experienced poor performance. Furthermore, from a commercial perspective, the post-disaster reconstruction environment is characterized by fierce competition and market uncertainty, challenging the organizational resilience of companies undertaking this work. One approach for improving contractor performance is the implementation of lean construction, but the literature lacks consensus on its capability to affect organizational resilience. To respond to this problem, a conceptual framework applicable for lean implementation in infrastructure, which explicitly addresses organizational resilience, is required for recovery projects. In parallel, contributing components to effective implementation of lean-recovery and supportive theories for justifying the conceptual framework must be identified. Consequently, this paper proposes a conceptual framework to implement lean practices for the enhancement of organizational resilience. The framework is developed using a systematic research method, wherein 110 research documents were discovered initially, and following processing, 18 relevant documents were identified and analyzed. Through this process, contingency and Transformation-Flow-Value (TFV) theories were identified as an appropriate foundation for a framework to implement lean construction in infrastructure recovery projects.
A Conceptual Framework for Implementing Lean Construction in Infrastructure Recovery Projects
Natural hazards can have substantial destructive impacts on the built environment. Providing effective services in disaster areas is heavily reliant on maintaining or replacing infrastructure; thus, post-disaster reconstruction of infrastructure has attracted growing attention. Due to the complex and dynamic nature of infrastructure recovery projects, contractor companies engaged in this work have typically experienced poor performance. Furthermore, from a commercial perspective, the post-disaster reconstruction environment is characterized by fierce competition and market uncertainty, challenging the organizational resilience of companies undertaking this work. One approach for improving contractor performance is the implementation of lean construction, but the literature lacks consensus on its capability to affect organizational resilience. To respond to this problem, a conceptual framework applicable for lean implementation in infrastructure, which explicitly addresses organizational resilience, is required for recovery projects. In parallel, contributing components to effective implementation of lean-recovery and supportive theories for justifying the conceptual framework must be identified. Consequently, this paper proposes a conceptual framework to implement lean practices for the enhancement of organizational resilience. The framework is developed using a systematic research method, wherein 110 research documents were discovered initially, and following processing, 18 relevant documents were identified and analyzed. Through this process, contingency and Transformation-Flow-Value (TFV) theories were identified as an appropriate foundation for a framework to implement lean construction in infrastructure recovery projects.
A Conceptual Framework for Implementing Lean Construction in Infrastructure Recovery Projects
Mahyar Habibi Rad (author) / Mohammad Mojtahedi (author) / Michael J. Ostwald (author) / Suzanne Wilkinson (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Developing a Framework for Implementing Green- Lean Construction Techniques
BASE | 2018
|Implementing BIM on Infrastructure: Comparison of Two Bridge Construction Projects
Online Contents | 2015
|Conceptual framework for lean construction ambidexterity in project-based organizations
Taylor & Francis Verlag | 2021
|LEAN CONSTRUCTION IN ROAD PROJECTS
TIBKAT | 2018
|