A platform for research: civil engineering, architecture and urbanism
Characteristics and Control of Subway Train-Induced Environmental Vibration: A Case Study
With the widespread construction of the subway in the Chinese mainland, the environmental vibration caused by subway operation has attracted increasing attention. Train-induced environmental vibrations can cause structural deformation, uneven settlement of line foundations, and tunnel leakage, affecting the structural safety of lines and foundations. This research focuses on a segment of the Nanchang Metro Line 3, which has been chosen as the subject of investigation. A numerical model was developed to analyze the subway train-induced environmental vibration, employing the finite element method (FEM). Utilizing a numerical model, an investigation was conducted to examine the impact of train speed on the subway train-induced environmental vibration, the train-induced environmental vibration transmission characteristics were analyzed, and the control effects of vibration reduction tracks on train-induced environmental vibration were discussed. Train-induced vibration tests were also conducted on Nanchang Metro Line 3 to verify the control effects of various vibration reduction tracks. The results indicate that the subway train-induced environmental vibration rises as the train speed goes up, and the vibration peaks always appear around 63 Hz. When the train speed doubles, the Z-vibration level increases from about 5.1 dB to 5.9 dB. Subway train-induced environmental vibration shows a fluctuating decreasing trend with increasing distance from the centerline of the tunnel. The Z-vibration level reaches its maximum 4 m away from the centerline of the tunnel. Compared with the embedded sleeper, the vibration-damping fastener exhibits a vibration reduction effect of about 9 dB to 18 dB, the rubber vibration-damping pad exhibits a better vibration reduction effect of about 16 dB to 24 dB, and the steel spring floating plate exhibits the best vibration-damping effect of about 18 dB to 28 dB. The calculated Z-vibration levels are basically consistent with the measured values, indicating the accuracy of the calculated results of the control effects of the vibration reduction tracks.
Characteristics and Control of Subway Train-Induced Environmental Vibration: A Case Study
With the widespread construction of the subway in the Chinese mainland, the environmental vibration caused by subway operation has attracted increasing attention. Train-induced environmental vibrations can cause structural deformation, uneven settlement of line foundations, and tunnel leakage, affecting the structural safety of lines and foundations. This research focuses on a segment of the Nanchang Metro Line 3, which has been chosen as the subject of investigation. A numerical model was developed to analyze the subway train-induced environmental vibration, employing the finite element method (FEM). Utilizing a numerical model, an investigation was conducted to examine the impact of train speed on the subway train-induced environmental vibration, the train-induced environmental vibration transmission characteristics were analyzed, and the control effects of vibration reduction tracks on train-induced environmental vibration were discussed. Train-induced vibration tests were also conducted on Nanchang Metro Line 3 to verify the control effects of various vibration reduction tracks. The results indicate that the subway train-induced environmental vibration rises as the train speed goes up, and the vibration peaks always appear around 63 Hz. When the train speed doubles, the Z-vibration level increases from about 5.1 dB to 5.9 dB. Subway train-induced environmental vibration shows a fluctuating decreasing trend with increasing distance from the centerline of the tunnel. The Z-vibration level reaches its maximum 4 m away from the centerline of the tunnel. Compared with the embedded sleeper, the vibration-damping fastener exhibits a vibration reduction effect of about 9 dB to 18 dB, the rubber vibration-damping pad exhibits a better vibration reduction effect of about 16 dB to 24 dB, and the steel spring floating plate exhibits the best vibration-damping effect of about 18 dB to 28 dB. The calculated Z-vibration levels are basically consistent with the measured values, indicating the accuracy of the calculated results of the control effects of the vibration reduction tracks.
Characteristics and Control of Subway Train-Induced Environmental Vibration: A Case Study
Lizhong Song (author) / Xiang Xu (author) / Quanmin Liu (author) / Haiwen Zhang (author) / Yisheng Zhang (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Modelling of train-induced vibration in subway interactions
Taylor & Francis Verlag | 2021
|Surface Train and Subway-Induced Ground Vibration Characteristics for Full-Scale Buildings
British Library Conference Proceedings | 2013
|Field Test and Analysis on Subway Train Induced Vibration
Springer Verlag | 2017
|The subway-train-induced vibration effects on surrounding buildings
British Library Conference Proceedings | 2005
|