A platform for research: civil engineering, architecture and urbanism
Diverse Responses of Vegetation Dynamics to Snow Cover Phenology over the Boreal Region
Snow cover phenology plays an important role in vegetation dynamics over the boreal region, but the observed evidence of this interaction is limited. A comprehensive understanding of the changes in vegetation dynamics and snow cover phenology as well as the interactions between them is urgently needed. To investigate this, we calculated two indicators, the start of the growing season (SOS) and the annual maximum enhanced vegetation index (EVImax), as proxies of vegetation dynamics using the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI). Snow cover duration (SCD) and snow cover end date (SCE) were also extracted from MODIS snow cover datasets. Then, we quantified the spatial-temporal changes in vegetation dynamics and snow cover phenology as well as the relationship between them over the boreal region. Our results showed that the EVImax generally demonstrated an increasing trend, but SOS varied in different regions and vegetation types from 2001 to 2014. The earlier onset of SOS was mainly concentrated in the Siberian boreal region. In the Eurasian boreal region, we observed an advance in the SCE and decrease in the SCD, while in the North American boreal region, the spatial distribution of the trends exhibited substantial heterogeneity. Our results also indicated that the snow cover phenology had significant impacts on the SOS and the EVImax, but the effects varied in different regions, vegetation types, and climate gradients. Our findings provide strong evidence of the interaction between vegetation dynamics and snow cover phenology, and snow cover should be considered when analyzing future vegetation dynamics in the boreal region.
Diverse Responses of Vegetation Dynamics to Snow Cover Phenology over the Boreal Region
Snow cover phenology plays an important role in vegetation dynamics over the boreal region, but the observed evidence of this interaction is limited. A comprehensive understanding of the changes in vegetation dynamics and snow cover phenology as well as the interactions between them is urgently needed. To investigate this, we calculated two indicators, the start of the growing season (SOS) and the annual maximum enhanced vegetation index (EVImax), as proxies of vegetation dynamics using the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI). Snow cover duration (SCD) and snow cover end date (SCE) were also extracted from MODIS snow cover datasets. Then, we quantified the spatial-temporal changes in vegetation dynamics and snow cover phenology as well as the relationship between them over the boreal region. Our results showed that the EVImax generally demonstrated an increasing trend, but SOS varied in different regions and vegetation types from 2001 to 2014. The earlier onset of SOS was mainly concentrated in the Siberian boreal region. In the Eurasian boreal region, we observed an advance in the SCE and decrease in the SCD, while in the North American boreal region, the spatial distribution of the trends exhibited substantial heterogeneity. Our results also indicated that the snow cover phenology had significant impacts on the SOS and the EVImax, but the effects varied in different regions, vegetation types, and climate gradients. Our findings provide strong evidence of the interaction between vegetation dynamics and snow cover phenology, and snow cover should be considered when analyzing future vegetation dynamics in the boreal region.
Diverse Responses of Vegetation Dynamics to Snow Cover Phenology over the Boreal Region
Tao Xiong (author) / Hongyan Zhang (author) / Jianjun Zhao (author) / Zhengxiang Zhang (author) / Xiaoyi Guo (author) / Zhenhua Zhu (author) / Yu Shan (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Arctic warming, increasing snow cover and widespread boreal winter cooling
IOP Institute of Physics | 2012
|Diverse growth trends and climate responses across Eurasia’s boreal forest
DOAJ | 2016
|Responses of Vegetation Autumn Phenology to Climatic Factors in Northern China
DOAJ | 2022
|Monitoring vegetation phenology using MODIS
Online Contents | 2003
|