A platform for research: civil engineering, architecture and urbanism
Exploring Potential of Seed Endophytic Bacteria for Enhancing Drought Stress Resilience in Maize (Zea mays L.)
Water scarcity is abiotic stress that is becoming more prevalent as a result of human activities, posing a threat to agriculture and food security. Recently, endophytic bacteria have been proven to reduce drought stress and increase crop productivity. Here, we explored the efficacy of seed endophytic bacteria in maize crops under water deficit conditions. For this purpose, twenty-seven endophytic bacteria have been isolated from three distinct maize cultivars seeds (Malka 2016, Sahiwal Gold and Gohar-19) and evaluated for desiccation tolerance of −0.18, −0.491, and −1.025 MPa induced by polyethylene glycol (PEG) 6000. The nine isolates were chosen on the basis of desiccation tolerance and evaluated for maize growth promotion and antioxidant activity under normal and drought conditions. Results showed that drought stress significantly decreased the growth of maize seedlings. However, isolates SM1, SM4, SM19, and SM23 significantly improved the root and shoot length, plant biomass, leaf area, proline content, sugar, and protein content under normal and drought conditions. Antioxidant enzymes were significantly decreased at p-value < 0.05 with inoculation of seed endophytic bacteria under drought conditions. However, further experiments of seed endophytic bacteria (SM1, SM4, SM19, and SM23) should be conducted to validate results.
Exploring Potential of Seed Endophytic Bacteria for Enhancing Drought Stress Resilience in Maize (Zea mays L.)
Water scarcity is abiotic stress that is becoming more prevalent as a result of human activities, posing a threat to agriculture and food security. Recently, endophytic bacteria have been proven to reduce drought stress and increase crop productivity. Here, we explored the efficacy of seed endophytic bacteria in maize crops under water deficit conditions. For this purpose, twenty-seven endophytic bacteria have been isolated from three distinct maize cultivars seeds (Malka 2016, Sahiwal Gold and Gohar-19) and evaluated for desiccation tolerance of −0.18, −0.491, and −1.025 MPa induced by polyethylene glycol (PEG) 6000. The nine isolates were chosen on the basis of desiccation tolerance and evaluated for maize growth promotion and antioxidant activity under normal and drought conditions. Results showed that drought stress significantly decreased the growth of maize seedlings. However, isolates SM1, SM4, SM19, and SM23 significantly improved the root and shoot length, plant biomass, leaf area, proline content, sugar, and protein content under normal and drought conditions. Antioxidant enzymes were significantly decreased at p-value < 0.05 with inoculation of seed endophytic bacteria under drought conditions. However, further experiments of seed endophytic bacteria (SM1, SM4, SM19, and SM23) should be conducted to validate results.
Exploring Potential of Seed Endophytic Bacteria for Enhancing Drought Stress Resilience in Maize (Zea mays L.)
Sulman Siddique (author) / Muhammad Naveed (author) / Muhammad Yaseen (author) / Muhammad Shahbaz (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Response of Maize Hybrids in Drought-Stress Using Drought Tolerance Indices
DOAJ | 2022
|Catalogue medicine | 2019
|