A platform for research: civil engineering, architecture and urbanism
Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing
Leaf surface is a multifunctional interface between a plant and its environment, which affects both ecological and biological processes. Leaf surface topography directly affects microhabitat availability and ability for deposition. In this study, atomic force microscopy (AFM) and the resuspended particulate matter method were applied to evaluate the adsorptive capacity of the leaf surface. Patterns of particulate‐capturing capacities in different tree species and the effect of leaf surface features on these capacities were explored. Results indicated the following: (1) more total suspended particles (TSP) per unit leaf area were captured by coniferous tree species than by broad‐leaved tree species in a particular order—i.e., Pinus tabuliformis > Pinus bungeana > Salix matsudana > Acer truncatum > Ginkgo biloba > Populus tomentosa; (2) Significant seasonal variation in particulate‐capturing capacities were determined. During the observation period, the broad‐leaved tree species capturing TSP and coarse particulate matter (PM10) clearly exhibited a ∩‐shape pattern— that is, increasing initially and later on decreasing; meanwhile, the ∩‐shape pattern was not clearly shown in P. tabuliformis and P. bungeana. However, no obvious patterns in the absorption of fine particulate matter (PM2.5) were found in the tested tree species; (3) The leaf surface topography, as observed by AFM and scanning electron microscopy, revealed that the broad‐leaved tree exhibits a good correlation between micro‐roughness of leaf surfaces and density of particles settling on leaf surfaces over time. However, the main factors affecting the adsorptive capacities of the leaves in coniferous trees are the number of stomata as well as the amount of epicuticular wax and the properties of the cuticle in different seasons.
Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing
Leaf surface is a multifunctional interface between a plant and its environment, which affects both ecological and biological processes. Leaf surface topography directly affects microhabitat availability and ability for deposition. In this study, atomic force microscopy (AFM) and the resuspended particulate matter method were applied to evaluate the adsorptive capacity of the leaf surface. Patterns of particulate‐capturing capacities in different tree species and the effect of leaf surface features on these capacities were explored. Results indicated the following: (1) more total suspended particles (TSP) per unit leaf area were captured by coniferous tree species than by broad‐leaved tree species in a particular order—i.e., Pinus tabuliformis > Pinus bungeana > Salix matsudana > Acer truncatum > Ginkgo biloba > Populus tomentosa; (2) Significant seasonal variation in particulate‐capturing capacities were determined. During the observation period, the broad‐leaved tree species capturing TSP and coarse particulate matter (PM10) clearly exhibited a ∩‐shape pattern— that is, increasing initially and later on decreasing; meanwhile, the ∩‐shape pattern was not clearly shown in P. tabuliformis and P. bungeana. However, no obvious patterns in the absorption of fine particulate matter (PM2.5) were found in the tested tree species; (3) The leaf surface topography, as observed by AFM and scanning electron microscopy, revealed that the broad‐leaved tree exhibits a good correlation between micro‐roughness of leaf surfaces and density of particles settling on leaf surfaces over time. However, the main factors affecting the adsorptive capacities of the leaves in coniferous trees are the number of stomata as well as the amount of epicuticular wax and the properties of the cuticle in different seasons.
Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing
Weikang Zhang (author) / Bing Wang (author) / Xiang Niu (author)
2017
Article (Journal)
Electronic Resource
Unknown
leaf structure , seasonal changes , AFM , particulate matter , PM10 , PM2.5 , roughness , Plant ecology , QK900-989
Metadata by DOAJ is licensed under CC BY-SA 1.0
Trans‐species predictors of tree leaf mass
Wiley | 2019
|Trans‐species predictors of tree leaf mass
Wiley | 2019
|Relationship between optical basicity and various capacities in metallurgical slags
British Library Online Contents | 2004
|Structural Relationship and Influence between Open Innovation Capacities and Performances
DOAJ | 2018
|