A platform for research: civil engineering, architecture and urbanism
Major factors of global and regional monsoon rainfall changes: natural versus anthropogenic forcing
A number of studies have investigated the mechanisms that determine changes in precipitation, including how a wet region gets wetter. However, not all monsoon areas get wetter—there is a need to understand the major factors behind changes in regional monsoon precipitation, in terms of external forcing and internal variabilities in the last six decades by a combination of different observed datasets and model runs. We have found that time of emergence of anthropogenic signals is robustly detected in the northern African monsoon before the 1990s with the use of the CESM Large Ensemble Project. From CMIP5 model runs and three reanalysis datasets, the results found are that the change in rainfall over African monsoon (AFM) is mainly due to anthropogenic forcing and that over Asian-Australian monsoon (AAM) is affected by internal variability. Moreover, the cause of American monsoon (AMM) rainfall change cannot be known due to a discrepancy among observed datasets. Here we show that the asymmetry between Northern Hemisphere (NH) and Southern Hemisphere (SH) parts by green-house gas (GHG) is detected over the AFM and AAM regions. However, the land monsoon rainfall in the northern AMM is decreased by a combination of GHG and aerosol forcing. In general, the aerosol forcing causes a decreasing rainfall over the monsoon regions. In future projection, the land rainfall over the AAM and AMM are expected to increase and decrease in the future from most models’ results. The asymmetry between an increase in NH and a decrease in SH is dominant in the future from most models’ future simulation results, which is well shown over the AFM and AAM. This study suggests that the physical process of GHG and aerosol effects in rainfall should be explored in the context of regional aspects.
Major factors of global and regional monsoon rainfall changes: natural versus anthropogenic forcing
A number of studies have investigated the mechanisms that determine changes in precipitation, including how a wet region gets wetter. However, not all monsoon areas get wetter—there is a need to understand the major factors behind changes in regional monsoon precipitation, in terms of external forcing and internal variabilities in the last six decades by a combination of different observed datasets and model runs. We have found that time of emergence of anthropogenic signals is robustly detected in the northern African monsoon before the 1990s with the use of the CESM Large Ensemble Project. From CMIP5 model runs and three reanalysis datasets, the results found are that the change in rainfall over African monsoon (AFM) is mainly due to anthropogenic forcing and that over Asian-Australian monsoon (AAM) is affected by internal variability. Moreover, the cause of American monsoon (AMM) rainfall change cannot be known due to a discrepancy among observed datasets. Here we show that the asymmetry between Northern Hemisphere (NH) and Southern Hemisphere (SH) parts by green-house gas (GHG) is detected over the AFM and AAM regions. However, the land monsoon rainfall in the northern AMM is decreased by a combination of GHG and aerosol forcing. In general, the aerosol forcing causes a decreasing rainfall over the monsoon regions. In future projection, the land rainfall over the AAM and AMM are expected to increase and decrease in the future from most models’ results. The asymmetry between an increase in NH and a decrease in SH is dominant in the future from most models’ future simulation results, which is well shown over the AFM and AAM. This study suggests that the physical process of GHG and aerosol effects in rainfall should be explored in the context of regional aspects.
Major factors of global and regional monsoon rainfall changes: natural versus anthropogenic forcing
Kyung-Ja Ha (author) / Byeong-Hee Kim (author) / Eui-Seok Chung (author) / Johnny C L Chan (author) / Chih-Pei Chang (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Anthropogenic forcing enhances rainfall seasonality in global land monsoon regions
DOAJ | 2020
|Natural and anthropogenic wave forcing in the Tallinn Bay, Baltic Sea
British Library Conference Proceedings | 2003
|Tropical disturbances and Indian monsoon rainfall
British Library Conference Proceedings | 2006
|Generation/forecasting of monsoon rainfall data
British Library Conference Proceedings | 1994
|