A platform for research: civil engineering, architecture and urbanism
Investigating the Spatiotemporal Dynamics of Urban Vitality Using Bicycle-Sharing Data
In recent decades, the availability of diverse location-based service (LBS) data has largely stimulated the research in individual human mobility. However, less attention has been paid on the intra-city movement of cyclists coupled with their spatiotemporal dynamics. To fill the knowledge gap, drawing on bicycle-sharing data over one week in Shanghai, China, this study investigates the dynamics of bicycle-sharing users at two spatial scales (i.e., city level and subdistrict level) and explores the intra-city spatial interactions by those cyclists. At the city level, by applying the analysis of variance (ANOVA) test and the Wilcoxon signed-rank test, this study examines the temporal variation of cyclists across a seven-day period. At the subdistrict level, we develop a new index to capture the urban vitality using bicycle-sharing data with the consideration of trip flow allied with spatial weights. In terms of the computed urban vitality over the course of a day, 98 subdistricts are partitioned into 7 groups by using K-means clustering. In addition, spatial autocorrelation and hot spot analysis are also applied to examine the spatial features of urban vitality at different periods. Our results reveal that urban vitality has an obvious character of the spatial cluster and this cluster feature varies markedly over the course of a day. By shedding new lights on intra-city movement, we argue our results are important in informing urban planners on how to better allocate public facilities and increase bicycle usage as a way to progress towards more sustainable urban areas.
Investigating the Spatiotemporal Dynamics of Urban Vitality Using Bicycle-Sharing Data
In recent decades, the availability of diverse location-based service (LBS) data has largely stimulated the research in individual human mobility. However, less attention has been paid on the intra-city movement of cyclists coupled with their spatiotemporal dynamics. To fill the knowledge gap, drawing on bicycle-sharing data over one week in Shanghai, China, this study investigates the dynamics of bicycle-sharing users at two spatial scales (i.e., city level and subdistrict level) and explores the intra-city spatial interactions by those cyclists. At the city level, by applying the analysis of variance (ANOVA) test and the Wilcoxon signed-rank test, this study examines the temporal variation of cyclists across a seven-day period. At the subdistrict level, we develop a new index to capture the urban vitality using bicycle-sharing data with the consideration of trip flow allied with spatial weights. In terms of the computed urban vitality over the course of a day, 98 subdistricts are partitioned into 7 groups by using K-means clustering. In addition, spatial autocorrelation and hot spot analysis are also applied to examine the spatial features of urban vitality at different periods. Our results reveal that urban vitality has an obvious character of the spatial cluster and this cluster feature varies markedly over the course of a day. By shedding new lights on intra-city movement, we argue our results are important in informing urban planners on how to better allocate public facilities and increase bicycle usage as a way to progress towards more sustainable urban areas.
Investigating the Spatiotemporal Dynamics of Urban Vitality Using Bicycle-Sharing Data
Peng Zeng (author) / Ming Wei (author) / Xiaoyang Liu (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Online Contents | 1997
|Exploring the spatiotemporal factors affecting bicycle-sharing demand during the COVID-19 pandemic
Springer Verlag | 2024
|