A platform for research: civil engineering, architecture and urbanism
Evaluation of the Dual Crop Coefficient Approach in Estimating Evapotranspiration of Drip-Irrigated Summer Maize in Xinjiang, China
A dual crop coefficient approach was validated experimentally to estimate evapotranspiration of drip-irrigated summer maize with partial mulch and no mulch in an arid region in Aksu, Xinjiang, China, during 2016−2017. In this study, five treatments were established based on fixed or variable irrigation cycles. Summer maize transpiration and evapotranspiration were estimated by the dual crop coefficient approach. Evapotranspiration was validated, and a positive regression with those values was obtained using the water balance method, with a root mean square error (RMSE) of 10 mm. The estimated transpiration also had a positive regression with measurements obtained by the stable carbon isotope technique, with a RMSE of 20 mm. By analyzing the RMSE, regression coefficients, and concordance index, we suggest that the dual crop coefficient approach is an effective method to estimate and partition evapotranspiration. Across the entire growing season for partially mulched summer maize, the estimated crop transpiration accounted for 78.7% and 76% of the total evapotranspiration in 2016 and 2017, respectively. For non-mulched summer maize, the estimated crop transpiration accounted for 64.9% of the total evapotranspiration over the entire growing season, which implied that the soil evaporation was about 12% higher than that of the partially mulched treatments. Water consumption with partial mulching was reduced by about 10%, compared with non-mulching, which indicated that mulching improved the use of water during irrigation.
Evaluation of the Dual Crop Coefficient Approach in Estimating Evapotranspiration of Drip-Irrigated Summer Maize in Xinjiang, China
A dual crop coefficient approach was validated experimentally to estimate evapotranspiration of drip-irrigated summer maize with partial mulch and no mulch in an arid region in Aksu, Xinjiang, China, during 2016−2017. In this study, five treatments were established based on fixed or variable irrigation cycles. Summer maize transpiration and evapotranspiration were estimated by the dual crop coefficient approach. Evapotranspiration was validated, and a positive regression with those values was obtained using the water balance method, with a root mean square error (RMSE) of 10 mm. The estimated transpiration also had a positive regression with measurements obtained by the stable carbon isotope technique, with a RMSE of 20 mm. By analyzing the RMSE, regression coefficients, and concordance index, we suggest that the dual crop coefficient approach is an effective method to estimate and partition evapotranspiration. Across the entire growing season for partially mulched summer maize, the estimated crop transpiration accounted for 78.7% and 76% of the total evapotranspiration in 2016 and 2017, respectively. For non-mulched summer maize, the estimated crop transpiration accounted for 64.9% of the total evapotranspiration over the entire growing season, which implied that the soil evaporation was about 12% higher than that of the partially mulched treatments. Water consumption with partial mulching was reduced by about 10%, compared with non-mulching, which indicated that mulching improved the use of water during irrigation.
Evaluation of the Dual Crop Coefficient Approach in Estimating Evapotranspiration of Drip-Irrigated Summer Maize in Xinjiang, China
Fengxiu Li (author) / Yingjie Ma (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2014
|