A platform for research: civil engineering, architecture and urbanism
Moisture Transport versus Precipitation Change in Sub-Basins of the Yangtze River Basin
The Yangtze River Basin (YRB) exhibits great climate heterogeneity, from high-elevated source areas dominated by westerlies to downstream wetlands sensitive to monsoon flows. However, the atmospheric hydrological cycle and associated precipitation changes are rarely being synthetically studied in different sub-basins of the YRB, which are particularly important since floods in the main stream largely result from the superposition of precipitation-runoff peaks from different sub-basins. By dividing the entire YRB into 12 sub-basins, this study presents a preliminary analysis of precipitation features and the associated moisture transport characteristics at the sub-basin scale during 1961–2015. Results suggest that the peak month of precipitation in the northwest sub-basins (July) is one month later than that in the southeast sub-basins (June). The highest total column water vapor (TCWV) contributes to the peak precipitation in July in the northwest sub-basins, while the peak precipitation in June in the southeast sub-basins is more relative to the interaction among multi-circulations (featured by relatively high westerly moisture transport and relatively low south monsoon contribution in the progression process of monsoon precipitation belt). The south monsoon moisture during summer seldom reaches the source region basin (SRB), the Jinshajiang River Basin (JRB), and the Mintuojiang River Basin (MTB). During 1961–2015, the precipitation mainly exhibits an “increase–decrease–increase” pattern from the source region to downstream; however, it is unlikely that this pattern is forced by the TCWV and zonal/meridional moisture transport. In addition, the moisture transport anomalies between wet and dry years are also defined in the 12 sub-basins, and these anomalies are characterized by significantly different moisture transport patterns.
Moisture Transport versus Precipitation Change in Sub-Basins of the Yangtze River Basin
The Yangtze River Basin (YRB) exhibits great climate heterogeneity, from high-elevated source areas dominated by westerlies to downstream wetlands sensitive to monsoon flows. However, the atmospheric hydrological cycle and associated precipitation changes are rarely being synthetically studied in different sub-basins of the YRB, which are particularly important since floods in the main stream largely result from the superposition of precipitation-runoff peaks from different sub-basins. By dividing the entire YRB into 12 sub-basins, this study presents a preliminary analysis of precipitation features and the associated moisture transport characteristics at the sub-basin scale during 1961–2015. Results suggest that the peak month of precipitation in the northwest sub-basins (July) is one month later than that in the southeast sub-basins (June). The highest total column water vapor (TCWV) contributes to the peak precipitation in July in the northwest sub-basins, while the peak precipitation in June in the southeast sub-basins is more relative to the interaction among multi-circulations (featured by relatively high westerly moisture transport and relatively low south monsoon contribution in the progression process of monsoon precipitation belt). The south monsoon moisture during summer seldom reaches the source region basin (SRB), the Jinshajiang River Basin (JRB), and the Mintuojiang River Basin (MTB). During 1961–2015, the precipitation mainly exhibits an “increase–decrease–increase” pattern from the source region to downstream; however, it is unlikely that this pattern is forced by the TCWV and zonal/meridional moisture transport. In addition, the moisture transport anomalies between wet and dry years are also defined in the 12 sub-basins, and these anomalies are characterized by significantly different moisture transport patterns.
Moisture Transport versus Precipitation Change in Sub-Basins of the Yangtze River Basin
Jihua Chen (author) / Ying Li (author) / Yingfei Wang (author) / Shuangshuang Zhou (author) / Xi Yuan (author) / Biao Xiong (author) / Yingping Huang (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Trends in precipitation extremes over the Yangtze River basin
British Library Online Contents | 2008
|Spatiotemporal Variations of Precipitation Regimes across Yangtze River Basin, China
British Library Conference Proceedings | 2013
|The frequency of precipitation days in the Yangtze River basin
British Library Conference Proceedings | 2006
|DOAJ | 2023
|