A platform for research: civil engineering, architecture and urbanism
Multi-objective game theory optimization for balancing economic, social and ecological benefits in the Three Gorges Reservoir operation
Reservoir operation is an important and effective measure for realizing optimal allocation of water resources. It can effectively alleviate regional scarcity of water resources, flood disasters and other social problems, and plays an important role in supporting sustainable strategic development of water resources. Coordinating the stakeholders is key to the smooth operation of a multifunctional reservoir. This research examines the competition among stakeholders of a multi-objective ecological reservoir operation aiming to provide for economic, social and ecological demands. A multi-objective game theory model (MOGM) specified 10-day water discharge to meet the triple water demands (power generation, socio-economic consumption and environment) for multi-purpose reservoir operation. The optimal operation of the Three Gorges Reservoir (TGR), with the ecological objective of providing comprehensive ecological flow demanded for some key ecological problems that may occur in the middle and lower reaches of the Yangtze River, was chosen as a case study. Discharged water calculated by the MOGM and a conventional multi-objective evolutionary algorithm/decomposition with a differential evolution operator was then allocated to different demands. The results illustrate the applicability and efficiency of the MOGM in balancing transboundary water conflicts in multi-objective reservoir operation that can provide guidance for the operation of the TGR.
Multi-objective game theory optimization for balancing economic, social and ecological benefits in the Three Gorges Reservoir operation
Reservoir operation is an important and effective measure for realizing optimal allocation of water resources. It can effectively alleviate regional scarcity of water resources, flood disasters and other social problems, and plays an important role in supporting sustainable strategic development of water resources. Coordinating the stakeholders is key to the smooth operation of a multifunctional reservoir. This research examines the competition among stakeholders of a multi-objective ecological reservoir operation aiming to provide for economic, social and ecological demands. A multi-objective game theory model (MOGM) specified 10-day water discharge to meet the triple water demands (power generation, socio-economic consumption and environment) for multi-purpose reservoir operation. The optimal operation of the Three Gorges Reservoir (TGR), with the ecological objective of providing comprehensive ecological flow demanded for some key ecological problems that may occur in the middle and lower reaches of the Yangtze River, was chosen as a case study. Discharged water calculated by the MOGM and a conventional multi-objective evolutionary algorithm/decomposition with a differential evolution operator was then allocated to different demands. The results illustrate the applicability and efficiency of the MOGM in balancing transboundary water conflicts in multi-objective reservoir operation that can provide guidance for the operation of the TGR.
Multi-objective game theory optimization for balancing economic, social and ecological benefits in the Three Gorges Reservoir operation
Yang Yu (author) / Rui Zhao (author) / Jiahe Zhang (author) / Douqiang Yang (author) / Tianyu Zhou (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Ecological operation goals for Three Gorges Reservoir
British Library Online Contents | 2009
|Social and Ecological Aspects of the Three Gorges Project
British Library Online Contents | 2001
|