A platform for research: civil engineering, architecture and urbanism
Carbon Footprint of Landscape Tree Production in Korea
Landscape trees sequester carbon during their growth processes, but they emit carbon through production in nurseries, which may offset carbon uptake. This study quantified the carbon footprint of landscape tree production. After determining the scope of life cycle for landscape tree production, the energy and material used to produce trees of a target size were analyzed by conducting a field survey of 35 nurseries. This energy consumption and input material were converted to an estimate of carbon emitted using data on carbon emission coefficients. The net carbon uptake was 4.6, 12.2, and 24.3 kg/tree for trees with a DBH of 7, 10, and 13 cm, respectively. Thus, even though carbon is emitted during the production process, landscape trees can act as a source of carbon uptake in cities that have high energy consumption levels. This study broke new ground for quantifying the carbon footprint of landscape tree production by overcoming limitations of the past studies that only considered carbon uptake due to absence of data on energy consumption and difficulty of field survey. These study results are expected to provide information on the carbon footprint of landscape trees and to be useful in determining optimal greenhouse gas emissions reduction goal through urban greenspaces.
Carbon Footprint of Landscape Tree Production in Korea
Landscape trees sequester carbon during their growth processes, but they emit carbon through production in nurseries, which may offset carbon uptake. This study quantified the carbon footprint of landscape tree production. After determining the scope of life cycle for landscape tree production, the energy and material used to produce trees of a target size were analyzed by conducting a field survey of 35 nurseries. This energy consumption and input material were converted to an estimate of carbon emitted using data on carbon emission coefficients. The net carbon uptake was 4.6, 12.2, and 24.3 kg/tree for trees with a DBH of 7, 10, and 13 cm, respectively. Thus, even though carbon is emitted during the production process, landscape trees can act as a source of carbon uptake in cities that have high energy consumption levels. This study broke new ground for quantifying the carbon footprint of landscape tree production by overcoming limitations of the past studies that only considered carbon uptake due to absence of data on energy consumption and difficulty of field survey. These study results are expected to provide information on the carbon footprint of landscape trees and to be useful in determining optimal greenhouse gas emissions reduction goal through urban greenspaces.
Carbon Footprint of Landscape Tree Production in Korea
Hye-Mi Park (author) / Hyun-Kil Jo (author) / Jin-Young Kim (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
The Carbon Landscape : Carbon footprint and landscape architecture
Online Contents | 2007
|Tema Archive | 2011
Assessing the carbon footprint of water production
Wiley | 2008
|