A platform for research: civil engineering, architecture and urbanism
Maize Disease Classification System Design Based on Improved ConvNeXt
Maize diseases have a great impact on agricultural productivity, making the classification of maize diseases a popular research area. Despite notable advancements in maize disease classification achieved via deep learning techniques, challenges such as low accuracy and identification difficulties still persist. To address these issues, this study introduced a convolutional neural network model named Sim-ConvNeXt, which incorporated a parameter-free SimAM attention module. The integration of this attention mechanism enhanced the ability of the downsample module to extract essential features of maize diseases, thereby improving classification accuracy. Moreover, transfer learning was employed to expedite model training and improve the classification performance. To evaluate the efficacy of the proposed model, a publicly accessible dataset with eight different types of maize diseases was utilized. Through the application of data augmentation techniques, including image resizing, hue, cropping, rotation, and edge padding, the dataset was expanded to comprise 17,670 images. Subsequently, a comparative analysis was conducted between the improved model and other models, wherein the approach demonstrated an accuracy rate of 95.2%. Notably, this performance represented a 1.2% enhancement over the ConvNeXt model and a 1.5% improvement over the advanced Swin Transformer model. Furthermore, the precision, recall, and F1 scores of the improved model demonstrated respective increases of 1.5% in each metric compared to the ConvNeXt model. Notably, using the Flask framework, a website for maize disease classification was developed, enabling accurate prediction of uploaded maize disease images.
Maize Disease Classification System Design Based on Improved ConvNeXt
Maize diseases have a great impact on agricultural productivity, making the classification of maize diseases a popular research area. Despite notable advancements in maize disease classification achieved via deep learning techniques, challenges such as low accuracy and identification difficulties still persist. To address these issues, this study introduced a convolutional neural network model named Sim-ConvNeXt, which incorporated a parameter-free SimAM attention module. The integration of this attention mechanism enhanced the ability of the downsample module to extract essential features of maize diseases, thereby improving classification accuracy. Moreover, transfer learning was employed to expedite model training and improve the classification performance. To evaluate the efficacy of the proposed model, a publicly accessible dataset with eight different types of maize diseases was utilized. Through the application of data augmentation techniques, including image resizing, hue, cropping, rotation, and edge padding, the dataset was expanded to comprise 17,670 images. Subsequently, a comparative analysis was conducted between the improved model and other models, wherein the approach demonstrated an accuracy rate of 95.2%. Notably, this performance represented a 1.2% enhancement over the ConvNeXt model and a 1.5% improvement over the advanced Swin Transformer model. Furthermore, the precision, recall, and F1 scores of the improved model demonstrated respective increases of 1.5% in each metric compared to the ConvNeXt model. Notably, using the Flask framework, a website for maize disease classification was developed, enabling accurate prediction of uploaded maize disease images.
Maize Disease Classification System Design Based on Improved ConvNeXt
Han Li (author) / Mingyang Qi (author) / Baoxia Du (author) / Qi Li (author) / Haozhang Gao (author) / Jun Yu (author) / Chunguang Bi (author) / Helong Yu (author) / Meijing Liang (author) / Guanshi Ye (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
RISK, SYSTEM BASED DESIGN AND CLASSIFICATION
British Library Conference Proceedings | 2010
|DOAJ | 2023
|ResNet-Based Classification for Leaf Disease Detection
Springer Verlag | 2025
|