A platform for research: civil engineering, architecture and urbanism
The linkage between δ2H and δ18O of soil water and precipitation provides a way of understanding precipitation infiltration, residence time, and soil water source. Soil water at 0–5, 15–20, and 40–45 cm depths and event-based precipitation were collected in a subtropical forest plantation. Correlations between the δ18O of soil water and precipitation on the same day were used to determine the critical threshold of precipitation infiltration. Residence time of precipitation in soil was determined with correlations between the δ18O of soil water and cumulative precipitation before sampling. Soil water source was determined by the intersection points of Soil Water Evaporation Lines (SEL) and local meteoric water lines. The results showed that precipitation >5–6 mm could pass through canopy and litter, and infiltrate into soil. Residence times varied from a few days to several months, and increased with soil depth. The model-based approach for SEL estimation were more robust than the regression-based approach due to the inverse variability in the δ2H and δ18O of soil water source and soil evaporative fractionation. Soil water at a 0–5 cm depth originated mainly from precipitation in the current season, while those at 15–20 and 40–45 cm depths originated mainly from precipitation in the previous season.
The linkage between δ2H and δ18O of soil water and precipitation provides a way of understanding precipitation infiltration, residence time, and soil water source. Soil water at 0–5, 15–20, and 40–45 cm depths and event-based precipitation were collected in a subtropical forest plantation. Correlations between the δ18O of soil water and precipitation on the same day were used to determine the critical threshold of precipitation infiltration. Residence time of precipitation in soil was determined with correlations between the δ18O of soil water and cumulative precipitation before sampling. Soil water source was determined by the intersection points of Soil Water Evaporation Lines (SEL) and local meteoric water lines. The results showed that precipitation >5–6 mm could pass through canopy and litter, and infiltrate into soil. Residence times varied from a few days to several months, and increased with soil depth. The model-based approach for SEL estimation were more robust than the regression-based approach due to the inverse variability in the δ2H and δ18O of soil water source and soil evaporative fractionation. Soil water at a 0–5 cm depth originated mainly from precipitation in the current season, while those at 15–20 and 40–45 cm depths originated mainly from precipitation in the previous season.
Variability of δ2H and δ18O in Soil Water and Its Linkage to Precipitation in an East Asian Monsoon Subtropical Forest Plantation
Sidan Lyu (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2020
|High Rainfall Inhibited Soil Respiration in an Asian Monsoon Forest in Taiwan
DOAJ | 2021
|