A platform for research: civil engineering, architecture and urbanism
Climate Change Contributions to Water Conservation Capacity in the Upper Mekong River Basin
Investigations into the impacts of climate change on water conservation capacity in the upper Mekong River Basin (UMRB) are important for the region’s sustainability. However, quantitative studies on isolating the individual contribution of climate change to water conservation capacity are lacking. In this study, various data-driven SWAT models were developed to quantitatively analyze the unique impact of climate change on water conservation capacity in the UMRB. The results reveal the following: (1) From 1981 to 2020, the annual water conservation capacity ranged from 191.6 to 392.9 mm, showing significant seasonal differences with the values in the rainy season (218.6–420.3 mm) significantly higher than that in the dry season (−57.0–53.2 mm). (2) The contribution of climate change to water conservation capacity is generally negative, with the highest contribution (−65.2%) in the dry season, followed by the annual (−8.7%) and the rainy season (−8.1%). (3) Precipitation, followed by evaporation and surface runoff, emerged as the critical factor affecting water conservation capacity changes in the UMRB. This study can provide insights for water resources management and climate change adaptations in the UMRB and other similar regions in the world.
Climate Change Contributions to Water Conservation Capacity in the Upper Mekong River Basin
Investigations into the impacts of climate change on water conservation capacity in the upper Mekong River Basin (UMRB) are important for the region’s sustainability. However, quantitative studies on isolating the individual contribution of climate change to water conservation capacity are lacking. In this study, various data-driven SWAT models were developed to quantitatively analyze the unique impact of climate change on water conservation capacity in the UMRB. The results reveal the following: (1) From 1981 to 2020, the annual water conservation capacity ranged from 191.6 to 392.9 mm, showing significant seasonal differences with the values in the rainy season (218.6–420.3 mm) significantly higher than that in the dry season (−57.0–53.2 mm). (2) The contribution of climate change to water conservation capacity is generally negative, with the highest contribution (−65.2%) in the dry season, followed by the annual (−8.7%) and the rainy season (−8.1%). (3) Precipitation, followed by evaporation and surface runoff, emerged as the critical factor affecting water conservation capacity changes in the UMRB. This study can provide insights for water resources management and climate change adaptations in the UMRB and other similar regions in the world.
Climate Change Contributions to Water Conservation Capacity in the Upper Mekong River Basin
Yuanyuan Luo (author) / Zhaodan Cao (author) / Xiaoer Zhao (author) / Chengqiu Wu (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Water Policy Analysis for the Mekong River Basin
Online Contents | 2004
|Water Policy Analysis for the Mekong River Basin
Taylor & Francis Verlag | 2004
|Management of the Mekong river basin
British Library Conference Proceedings | 2000
|