A platform for research: civil engineering, architecture and urbanism
Self-Aggregation and Denitrifying Strains Accelerate Granulation and Enhance Denitrification
A long start-up period is one of the main factors limiting the practical application of aerobic granular sludge (AGS). Bioaugmentation could be a good strategy to accelerate aerobic granulation. In this research, four denitrifying strains were isolated from mature AGS. Mycobacterium senegalense X3-1 exhibited the strongest self-aggregation ability and good denitrification ability. Ensifer adhaerens X1 showed the strongest denitrification ability but poor self-aggregation ability. Additionally, strain X3-1 demonstrated the highest extracellular polymeric substances (EPS) contents accompanied by relatively high N-acyl-homoserine lactones (AHLs) concentrations, which could illustrate its predominant aggregation ability—AHLs produced by bacteria regulate EPS secretion to accelerate cell aggregation. Strain X3-1 and X1 were chosen as inoculated bacterium to verify the effects of bioaugmentation on AGS granulation and denitrification. Granulation was achieved in the sequential batch reactors (SBRs) added strain X3-1 10 days earlier than the control group. The particle morphology and TIN removal rate of X3-1 were both superior to the latter. The introduction of strains reduced the richness and diversity of the microbial community, but the key functional bacteria, Candidatus_Competibacter, proliferates in the SBR inoculated with X3-1. Conclusively, it is suggested Mycobacterium senegalense X3-1 could be a prospective strain for enhancing AGS formation and denitrification.
Self-Aggregation and Denitrifying Strains Accelerate Granulation and Enhance Denitrification
A long start-up period is one of the main factors limiting the practical application of aerobic granular sludge (AGS). Bioaugmentation could be a good strategy to accelerate aerobic granulation. In this research, four denitrifying strains were isolated from mature AGS. Mycobacterium senegalense X3-1 exhibited the strongest self-aggregation ability and good denitrification ability. Ensifer adhaerens X1 showed the strongest denitrification ability but poor self-aggregation ability. Additionally, strain X3-1 demonstrated the highest extracellular polymeric substances (EPS) contents accompanied by relatively high N-acyl-homoserine lactones (AHLs) concentrations, which could illustrate its predominant aggregation ability—AHLs produced by bacteria regulate EPS secretion to accelerate cell aggregation. Strain X3-1 and X1 were chosen as inoculated bacterium to verify the effects of bioaugmentation on AGS granulation and denitrification. Granulation was achieved in the sequential batch reactors (SBRs) added strain X3-1 10 days earlier than the control group. The particle morphology and TIN removal rate of X3-1 were both superior to the latter. The introduction of strains reduced the richness and diversity of the microbial community, but the key functional bacteria, Candidatus_Competibacter, proliferates in the SBR inoculated with X3-1. Conclusively, it is suggested Mycobacterium senegalense X3-1 could be a prospective strain for enhancing AGS formation and denitrification.
Self-Aggregation and Denitrifying Strains Accelerate Granulation and Enhance Denitrification
Shujia Zhang (author) / Chunyan Wang (author) / Yijia Xie (author) / Rongfan Chen (author) / Mengyuan Huang (author) / Xiaoling Hu (author) / Bin Wang (author) / Wenbin Guo (author) / Haiyun Huang (author) / Rongrong Wang (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2000
|