A platform for research: civil engineering, architecture and urbanism
Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review
The problems linked to plastic wastes have led to the development of biodegradable plastics. More specifically, biodegradable bioplastics are the polymers that are mineralized into carbon dioxide, methane, water, inorganic compounds, or biomass through the enzymatic action of specific microorganisms. They could, therefore, be a suitable and environmentally friendly substitute to conventional petrochemical plastics. The physico-chemical structure of the biopolymers, the environmental conditions, as well as the microbial populations to which the bioplastics are exposed to are the most influential factors to biodegradation. This process can occur in both natural and industrial environments, in aerobic and anaerobic conditions, with the latter being the least researched. The examined aerobic environments include compost, soil, and some aquatic environments, whereas the anaerobic environments include anaerobic digestion plants and a few aquatic habitats. This review investigates both the extent and the biodegradation rates under different environments and explores the state-of-the-art knowledge of the environmental and biological factors involved in biodegradation. Moreover, the review demonstrates the need for more research on the long-term fate of bioplastics under natural and industrial (engineered) environments. However, bioplastics cannot be considered a panacea when dealing with the elimination of plastic pollution.
Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review
The problems linked to plastic wastes have led to the development of biodegradable plastics. More specifically, biodegradable bioplastics are the polymers that are mineralized into carbon dioxide, methane, water, inorganic compounds, or biomass through the enzymatic action of specific microorganisms. They could, therefore, be a suitable and environmentally friendly substitute to conventional petrochemical plastics. The physico-chemical structure of the biopolymers, the environmental conditions, as well as the microbial populations to which the bioplastics are exposed to are the most influential factors to biodegradation. This process can occur in both natural and industrial environments, in aerobic and anaerobic conditions, with the latter being the least researched. The examined aerobic environments include compost, soil, and some aquatic environments, whereas the anaerobic environments include anaerobic digestion plants and a few aquatic habitats. This review investigates both the extent and the biodegradation rates under different environments and explores the state-of-the-art knowledge of the environmental and biological factors involved in biodegradation. Moreover, the review demonstrates the need for more research on the long-term fate of bioplastics under natural and industrial (engineered) environments. However, bioplastics cannot be considered a panacea when dealing with the elimination of plastic pollution.
Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review
Adele Folino (author) / Aimilia Karageorgiou (author) / Paolo S. Calabrò (author) / Dimitrios Komilis (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Industrial Applications of Bioplastics
British Library Conference Proceedings | 2000
|Online Contents | 1998
|A story of wasted heat and wasted opportunity
British Library Online Contents | 1993
|Stormy weather for bioplastics
British Library Online Contents | 2007
|