A platform for research: civil engineering, architecture and urbanism
Assessment of Water Quality in Roof-Harvested Rainwater Barrels in Greater Philadelphia
A study of water quality parameters was conducted in 38 small-scale roof-harvested rainwater barrels (RHRB) located in urban and peri-urban Philadelphia, USA in winter (November–December) 2014 and summer (June–August 2016). Parameters included two fecal indicator bacteria (FIB) (Escherichia coli and Enterococcus spp.) measured using culture-based methods, eight potential enteric and opportunistic pathogens (Campylobacter jejuni, Acanthamoeba spp., Legionella spp., L. pneumophila, Naegleria fowleri, Pseudomonas aeruginosa, Mycobacterium avium and Mycobacterium intracellulare) measured using quantitative polymerase chain reaction (qPCR), and two metals (lead and zinc) using inductively coupled plasma mass spectrometry (ICP-MS). Fecal indicator bacteria were detected in greater than 60% RHRB samples and concentrations (up to >103 per 100 mL) exceeded US Food and Drug Administration (USFDA) irrigation water quality standards. Among the enteric and opportunistic pathogens tested, 57.9, 44.7, 21.1, 18.4, 5 and 3% were PCR positive for Legionella spp., M. intracellulare, M. avium, Acanthamoeba spp., P. aeruginosa, and C. jejuni, respectively. N. fowleri and L. pneumophila were not detected in any sample. The concentrations of enteric and opportunistic pathogens ranged from 102 to 107 gene copies/L of barrel water. Lead and zinc were each observed in 88.5% of RHRB but the concentrations did not exceed US Environmental Protection Agency (USEPA) standards for irrigating produce, with the exception of one zinc observation (2660 µg/L). Based on these data, it appears that the risk associated with metals in RHRB is likely to be low, as these barrels are only used for gardening and non-potable purposes. However, risks due to fecal and opportunistic pathogens may be higher due to exposure to aerosols during gardening activities and produce consumed raw, and should be investigated further.
Assessment of Water Quality in Roof-Harvested Rainwater Barrels in Greater Philadelphia
A study of water quality parameters was conducted in 38 small-scale roof-harvested rainwater barrels (RHRB) located in urban and peri-urban Philadelphia, USA in winter (November–December) 2014 and summer (June–August 2016). Parameters included two fecal indicator bacteria (FIB) (Escherichia coli and Enterococcus spp.) measured using culture-based methods, eight potential enteric and opportunistic pathogens (Campylobacter jejuni, Acanthamoeba spp., Legionella spp., L. pneumophila, Naegleria fowleri, Pseudomonas aeruginosa, Mycobacterium avium and Mycobacterium intracellulare) measured using quantitative polymerase chain reaction (qPCR), and two metals (lead and zinc) using inductively coupled plasma mass spectrometry (ICP-MS). Fecal indicator bacteria were detected in greater than 60% RHRB samples and concentrations (up to >103 per 100 mL) exceeded US Food and Drug Administration (USFDA) irrigation water quality standards. Among the enteric and opportunistic pathogens tested, 57.9, 44.7, 21.1, 18.4, 5 and 3% were PCR positive for Legionella spp., M. intracellulare, M. avium, Acanthamoeba spp., P. aeruginosa, and C. jejuni, respectively. N. fowleri and L. pneumophila were not detected in any sample. The concentrations of enteric and opportunistic pathogens ranged from 102 to 107 gene copies/L of barrel water. Lead and zinc were each observed in 88.5% of RHRB but the concentrations did not exceed US Environmental Protection Agency (USEPA) standards for irrigating produce, with the exception of one zinc observation (2660 µg/L). Based on these data, it appears that the risk associated with metals in RHRB is likely to be low, as these barrels are only used for gardening and non-potable purposes. However, risks due to fecal and opportunistic pathogens may be higher due to exposure to aerosols during gardening activities and produce consumed raw, and should be investigated further.
Assessment of Water Quality in Roof-Harvested Rainwater Barrels in Greater Philadelphia
Kerry A. Hamilton (author) / Kerrianne Parrish (author) / Warish Ahmed (author) / Charles N. Haas (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Monitoring of Roof-Harvested Rainwater Quality
ASCE | 2011
|Monitoring of Roof-Harvested Rainwater Quality
British Library Conference Proceedings | 2011
|Factors Affecting the Quality of Roof-Harvested Rainwater
Springer Verlag | 2018
|Quality of roof-harvested rainwater – Comparison of different roofing materials
Online Contents | 2012
|ASSESSMENT OF THE ROOF - HARVESTED RAINWATER QUALITY IN SOME SUBURB DISTRICTS, HANOI, VIET NAM
BASE | 2018
|