A platform for research: civil engineering, architecture and urbanism
Modeling of Low Visibility-Related Rural Single-Vehicle Crashes Considering Unobserved Heterogeneity and Spatial Correlation
Accident analysis and prevention are helpful to ensure the sustainable development of transportation. The aim of this research was to investigate the factors associated with the severity of low-visibility-related rural single-vehicle crashes. Firstly, a latent class clustering model was implemented to partition the whole-dataset into a relatively homogeneous sub-dataset. Then, a spatial random parameters logit model was established for each dataset to capture unobserved heterogeneity and spatial correlation. Analysis was conducted based on the crash data (2014–2019) from 110 two-lane road segments. The results show that the proposed method is a superior crash severity modeling approach to accommodate the unobserved heterogeneity and spatial correlation. Three variables—seatbelt not used, motorcycle, and collision with fixed object—have a stable positive correlation with crash severity. Motorcycle leads to a 12.8%, 23.8%, and 12.6% increase in the risk of serious crashes in the whole-dataset, cluster 3, and cluster 4, respectively. In the whole-dataset, cluster 2, and cluster 3, the risk of serious crashes caused by seatbelt not used increased by 5.5%, 0.1%, and 30.6%, respectively, and caused by collision with fixed object increased by 33.2%, 1.2%, and 13.2%, respectively. The results can provide valuable information for engineers and policy makers to develop targeted measures.
Modeling of Low Visibility-Related Rural Single-Vehicle Crashes Considering Unobserved Heterogeneity and Spatial Correlation
Accident analysis and prevention are helpful to ensure the sustainable development of transportation. The aim of this research was to investigate the factors associated with the severity of low-visibility-related rural single-vehicle crashes. Firstly, a latent class clustering model was implemented to partition the whole-dataset into a relatively homogeneous sub-dataset. Then, a spatial random parameters logit model was established for each dataset to capture unobserved heterogeneity and spatial correlation. Analysis was conducted based on the crash data (2014–2019) from 110 two-lane road segments. The results show that the proposed method is a superior crash severity modeling approach to accommodate the unobserved heterogeneity and spatial correlation. Three variables—seatbelt not used, motorcycle, and collision with fixed object—have a stable positive correlation with crash severity. Motorcycle leads to a 12.8%, 23.8%, and 12.6% increase in the risk of serious crashes in the whole-dataset, cluster 3, and cluster 4, respectively. In the whole-dataset, cluster 2, and cluster 3, the risk of serious crashes caused by seatbelt not used increased by 5.5%, 0.1%, and 30.6%, respectively, and caused by collision with fixed object increased by 33.2%, 1.2%, and 13.2%, respectively. The results can provide valuable information for engineers and policy makers to develop targeted measures.
Modeling of Low Visibility-Related Rural Single-Vehicle Crashes Considering Unobserved Heterogeneity and Spatial Correlation
Zhenggan Cai (author) / Fulu Wei (author) / Zhenyu Wang (author) / Yongqing Guo (author) / Long Chen (author) / Xin Li (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Cities and Satellites: Spatial Effects and Unobserved Heterogeneity in Modeling Urban Growth
British Library Online Contents | 2008
|Cities and Satellites: Spatial Effects and Unobserved Heterogeneity in the Modeling of Urban Growth
BASE | 2008
|