A platform for research: civil engineering, architecture and urbanism
Where should we apply biochar?
The heating of biomass under low-oxygen conditions generates three co-products, bio-oil, biogas, and biochar. Bio-oil can be stabilized and used as fuel oil or be further refined for various applications and biogas can be used as an energy source during the low-oxygen heating process. Biochar can be used to sequester carbon in soil and has the potential to increase crop yields when it is used to improve yield-limiting soil properties. Complex bio-physical interactions have made it challenging to answer the question of where biochar should be applied for the maximum agronomic and economic benefits. We address this challenge by developing an extensive informatics workflow for processing and analyzing crop yield response data as well as a large spatial-scale modeling platform. We use a probabilistic graphical model to study the relationships between soil and biochar variables and predict the probability and magnitude of crop yield response to biochar application. Our results show an average increase in crop yields ranging from 4.7% to 6.4% depending on the biochar feedstock and application rate. Expected yield increases of at least 6.1% and 8.8% are necessary to cover 25% and 10% of US cropland with biochar. We find that biochar application to crop area with an expected yield increase of at least 5.3%–5.9% would result in carbon sequestration offsetting 0.57%–0.67% of US greenhouse gas emissions. Applying biochar to corn area is the most profitable from a revenue perspective when compared to soybeans and wheat because additional revenues accrued by farmers are not enough to cover the costs of biochar applications in many regions of the United States.
Where should we apply biochar?
The heating of biomass under low-oxygen conditions generates three co-products, bio-oil, biogas, and biochar. Bio-oil can be stabilized and used as fuel oil or be further refined for various applications and biogas can be used as an energy source during the low-oxygen heating process. Biochar can be used to sequester carbon in soil and has the potential to increase crop yields when it is used to improve yield-limiting soil properties. Complex bio-physical interactions have made it challenging to answer the question of where biochar should be applied for the maximum agronomic and economic benefits. We address this challenge by developing an extensive informatics workflow for processing and analyzing crop yield response data as well as a large spatial-scale modeling platform. We use a probabilistic graphical model to study the relationships between soil and biochar variables and predict the probability and magnitude of crop yield response to biochar application. Our results show an average increase in crop yields ranging from 4.7% to 6.4% depending on the biochar feedstock and application rate. Expected yield increases of at least 6.1% and 8.8% are necessary to cover 25% and 10% of US cropland with biochar. We find that biochar application to crop area with an expected yield increase of at least 5.3%–5.9% would result in carbon sequestration offsetting 0.57%–0.67% of US greenhouse gas emissions. Applying biochar to corn area is the most profitable from a revenue perspective when compared to soybeans and wheat because additional revenues accrued by farmers are not enough to cover the costs of biochar applications in many regions of the United States.
Where should we apply biochar?
Hamze Dokoohaki (author) / Fernando E Miguez (author) / David Laird (author) / Jerome Dumortier (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Ecology Should Apply to Ecosystem Management: A Comment
Wiley | 1996
|British Library Conference Proceedings | 2011
|Where should sidewalks be placed
Engineering Index Backfile | 1949
|Where Should We Have the Meeting?
Taylor & Francis Verlag | 2020
|The effect of biochar on plant diseases: what should we learn while designing biochar substrates?
DOAJ | 2017
|