A platform for research: civil engineering, architecture and urbanism
Improved indoor environment through optimised ventilator and furniture positioning: A case of slum rehabilitation housing, Mumbai, India
This study optimized the ventilator and furniture location of a tenement unit in a low-income urban habitat to obtain maximum experiential indoor environmental quality (e-IEQ) over the breathing zone. Hypothetical interior layouts using a combination of the two design parameters of ventilator location and bed position were generated for optimizing the design layout. This layout could promote maximum indoor airflow and minimum indoor air temperature and contaminant concentration. In this study, an improved indoor environment is hypothesized to be attainable through improved natural ventilation and thermal performance in the occupied zones. A sequential methodology involving “parametric design modeling–computational simulation–multiobjective optimization–multicriteria decision making”-based framework was selected. Results exhibited that the currently designed tenement unit had a poor indoor environment, whereas the hypothesized iterated layout “optimized design layout, scenario 3 (ODL 3)” derived from the optimization and decision-making algorithm performed effectively in providing e-IEQ. An increase in experiential indoor air velocity by 0.2 m/s and a decrease in temperature by 2 °C were observed over the monitoring point in the ODL 3 considering the existing scenario. Therefore, this study can find a way toward the development of sustainable habitat design guidelines under upcoming slum redevelopment policies across the nation.
Improved indoor environment through optimised ventilator and furniture positioning: A case of slum rehabilitation housing, Mumbai, India
This study optimized the ventilator and furniture location of a tenement unit in a low-income urban habitat to obtain maximum experiential indoor environmental quality (e-IEQ) over the breathing zone. Hypothetical interior layouts using a combination of the two design parameters of ventilator location and bed position were generated for optimizing the design layout. This layout could promote maximum indoor airflow and minimum indoor air temperature and contaminant concentration. In this study, an improved indoor environment is hypothesized to be attainable through improved natural ventilation and thermal performance in the occupied zones. A sequential methodology involving “parametric design modeling–computational simulation–multiobjective optimization–multicriteria decision making”-based framework was selected. Results exhibited that the currently designed tenement unit had a poor indoor environment, whereas the hypothesized iterated layout “optimized design layout, scenario 3 (ODL 3)” derived from the optimization and decision-making algorithm performed effectively in providing e-IEQ. An increase in experiential indoor air velocity by 0.2 m/s and a decrease in temperature by 2 °C were observed over the monitoring point in the ODL 3 considering the existing scenario. Therefore, this study can find a way toward the development of sustainable habitat design guidelines under upcoming slum redevelopment policies across the nation.
Improved indoor environment through optimised ventilator and furniture positioning: A case of slum rehabilitation housing, Mumbai, India
Ahana Sarkar (author) / Ronita Bardhan (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Factors Affecting Residential Satisfaction in Slum Rehabilitation Housing in Mumbai
DOAJ | 2020
|Against the odds: Slum rehabilitation in neoliberal Mumbai
Elsevier | 2008
|Against the odds: Slum rehabilitation in neoliberal Mumbai
Online Contents | 2008
|A review of slum housing policies in Mumbai
Online Contents | 1998
|