A platform for research: civil engineering, architecture and urbanism
Opaque Ventilated Façade (OVF) Thermal Performance Simulation for Office Buildings in Brazil
Opaque ventilated façades (OVFs) are increasingly gaining in importance in the design of sustainable buildings, given that they can lessen the building´s environmental impact. Opaque ventilated façades can reduce thermal gains in hot climate zones, improving the thermal comfort indoors, and reducing air conditioning demand. Nevertheless, the thermal behaviour of the opaque ventilated façade depends on the climatic conditions and the building´s specific design. This study analyses the effect of opaque ventilated façades in office buildings using 30 constructive configurations under eight tropical climate conditions. The study considers three options for the external layer of cladding (ceramic, stone, and aluminium composite material) and two configurations for the inner layer (plasterboard with mineral wool and ceramic). Simulations were carried out using the software tools TRanNsient SYstem Simulation program (TRNSYS) and TRNFlow. The model developed considers bioclimatic characteristics, including solar radiation and wind conditions for each climatic zone. The operating temperature was selected from within the range established by occupant comfort regulations. The findings suggest that it is possible to select the best office building opaque ventilated façade configuration for each of the specific climate conditions in Brazil.
Opaque Ventilated Façade (OVF) Thermal Performance Simulation for Office Buildings in Brazil
Opaque ventilated façades (OVFs) are increasingly gaining in importance in the design of sustainable buildings, given that they can lessen the building´s environmental impact. Opaque ventilated façades can reduce thermal gains in hot climate zones, improving the thermal comfort indoors, and reducing air conditioning demand. Nevertheless, the thermal behaviour of the opaque ventilated façade depends on the climatic conditions and the building´s specific design. This study analyses the effect of opaque ventilated façades in office buildings using 30 constructive configurations under eight tropical climate conditions. The study considers three options for the external layer of cladding (ceramic, stone, and aluminium composite material) and two configurations for the inner layer (plasterboard with mineral wool and ceramic). Simulations were carried out using the software tools TRanNsient SYstem Simulation program (TRNSYS) and TRNFlow. The model developed considers bioclimatic characteristics, including solar radiation and wind conditions for each climatic zone. The operating temperature was selected from within the range established by occupant comfort regulations. The findings suggest that it is possible to select the best office building opaque ventilated façade configuration for each of the specific climate conditions in Brazil.
Opaque Ventilated Façade (OVF) Thermal Performance Simulation for Office Buildings in Brazil
Camila Gregório-Atem (author) / Carolina Aparicio-Fernández (author) / Helena Coch (author) / José-Luis Vivancos (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Experimental analysis and model validation of an opaque ventilated facade
British Library Online Contents | 2012
|Experimental analysis and model validation of an opaque ventilated facade
Online Contents | 2012
|