A platform for research: civil engineering, architecture and urbanism
Investigation of photocatalytic degradation of 2,4-dichlorophenol by heat treated Fe3O4/TiO2/Ag loaded polycaprolactone/polyethylenglycole electrospun nanofibers
The electrospinning technique is utilized to physically load Fe3O4/TiO2/Ag nanoparticles on polycaprolactone/polyethylene glycol (PCL/PEG) nanofibers scaffold for oxidative decomposition of 2, 4-dichlorophenol as a model organic pollutant. The scaffold is used in order to eliminate the need for separation of the catalyst after treatment, thus, making the catalyst system recyclable and reusable. Prepared nanofibers were thermally processed to change the morphology to crystalline form to make them transparent to visible light, which is a necessity for the function of photocatalysts. Different analysis techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), UV/Vis spectrophotometry (UV–Vis), and field emission electron microscopy (FESEM) were implemented to identify and characterize the presented products. Kinetic performance of both the particulate system and nanofiber system was determined. The prepared products demonstrated good catalytic activity by 53%, decomposing the target pollutant in 180 minutes of visible light exposure. The new catalyst-loaded nanofiber system maintained the decomposition performance of the particulate system and improved its reusability. Although this scaffold nanofiber-based system demonstrates slightly lower pollutant removal performance in the first run compared to the ternary non-fixed particle system (53.12% vs 54.74%), it outperforms the non-fixed particulate system in the 2nd and 3rd runs. The decomposition rate improved from 52.37% to 52.81% in the 2nd run and from 48.08 to 51.02% for the 3rd run. This photocatalytic system can be used as a reusable efficient catalyst for oxidative decomposing of 2, 4-dichlorophenol.
Investigation of photocatalytic degradation of 2,4-dichlorophenol by heat treated Fe3O4/TiO2/Ag loaded polycaprolactone/polyethylenglycole electrospun nanofibers
The electrospinning technique is utilized to physically load Fe3O4/TiO2/Ag nanoparticles on polycaprolactone/polyethylene glycol (PCL/PEG) nanofibers scaffold for oxidative decomposition of 2, 4-dichlorophenol as a model organic pollutant. The scaffold is used in order to eliminate the need for separation of the catalyst after treatment, thus, making the catalyst system recyclable and reusable. Prepared nanofibers were thermally processed to change the morphology to crystalline form to make them transparent to visible light, which is a necessity for the function of photocatalysts. Different analysis techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), UV/Vis spectrophotometry (UV–Vis), and field emission electron microscopy (FESEM) were implemented to identify and characterize the presented products. Kinetic performance of both the particulate system and nanofiber system was determined. The prepared products demonstrated good catalytic activity by 53%, decomposing the target pollutant in 180 minutes of visible light exposure. The new catalyst-loaded nanofiber system maintained the decomposition performance of the particulate system and improved its reusability. Although this scaffold nanofiber-based system demonstrates slightly lower pollutant removal performance in the first run compared to the ternary non-fixed particle system (53.12% vs 54.74%), it outperforms the non-fixed particulate system in the 2nd and 3rd runs. The decomposition rate improved from 52.37% to 52.81% in the 2nd run and from 48.08 to 51.02% for the 3rd run. This photocatalytic system can be used as a reusable efficient catalyst for oxidative decomposing of 2, 4-dichlorophenol.
Investigation of photocatalytic degradation of 2,4-dichlorophenol by heat treated Fe3O4/TiO2/Ag loaded polycaprolactone/polyethylenglycole electrospun nanofibers
Amir Naghizadeh (author) / Mohammad Ali Salehi (author) / Leila Mivehi (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2
British Library Online Contents | 2018
|Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2
British Library Online Contents | 2018
|British Library Online Contents | 2013
|Electronic characterization and photocatalytic properties of TiO2/CdO electrospun nanofibers
British Library Online Contents | 2010
|Electrospun PVC/Fe3O4 composite nanofibers for microwave absorption applications
British Library Online Contents | 2012
|