A platform for research: civil engineering, architecture and urbanism
Influence of Early-Season Drought on the Peak of Growing Season in China Varies by Drought Timing and Biomes
The peak of growing season (POG) represents the timing of the maximum capacity of vegetation photosynthesis and acts as a crucial phenological indicator for the carbon cycle in terrestrial ecosystems. However, little is known about how POG responds to extreme climate events such as drought across different biomes. Based on two drought indices, we analyzed the temporal–spatial pattern of drought and POG in China and then investigated how drought influenced the POG in different periods of the early season through correlation analysis. In general, a trend towards increased aridity and earlier POG was found in most areas. The impact of drought on POG differed among periods. On the one hand, an earlier POG enabled plants to reduce evapotranspiration and mitigate the risk of severe summer drought. On the other hand, the drought that occurred in spring impeded plant growth and caused a delay in spring phenology, thereby postponing POG. Summer drought led to an earlier POG in relatively dry biomes but inversely led to a later peak in photosynthetic activity in wetter biomes. We also observed a 1-month/2-month lagged effect of drought on POG in almost half of the areas and a 2-month/ 3-month cumulative effect of drought in the north of 50° N. These findings enhance our understanding of carbon uptake in terrestrial ecosystems by clarifying the mechanisms by which climate change impacts vegetation growth and photosynthetic activity.
Influence of Early-Season Drought on the Peak of Growing Season in China Varies by Drought Timing and Biomes
The peak of growing season (POG) represents the timing of the maximum capacity of vegetation photosynthesis and acts as a crucial phenological indicator for the carbon cycle in terrestrial ecosystems. However, little is known about how POG responds to extreme climate events such as drought across different biomes. Based on two drought indices, we analyzed the temporal–spatial pattern of drought and POG in China and then investigated how drought influenced the POG in different periods of the early season through correlation analysis. In general, a trend towards increased aridity and earlier POG was found in most areas. The impact of drought on POG differed among periods. On the one hand, an earlier POG enabled plants to reduce evapotranspiration and mitigate the risk of severe summer drought. On the other hand, the drought that occurred in spring impeded plant growth and caused a delay in spring phenology, thereby postponing POG. Summer drought led to an earlier POG in relatively dry biomes but inversely led to a later peak in photosynthetic activity in wetter biomes. We also observed a 1-month/2-month lagged effect of drought on POG in almost half of the areas and a 2-month/ 3-month cumulative effect of drought in the north of 50° N. These findings enhance our understanding of carbon uptake in terrestrial ecosystems by clarifying the mechanisms by which climate change impacts vegetation growth and photosynthetic activity.
Influence of Early-Season Drought on the Peak of Growing Season in China Varies by Drought Timing and Biomes
Zexing Tao (author) / Junhu Dai (author) / Xiaoyue Wang (author) / Yuan Wang (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Bushfire season in Australian Indigenous seasonal calendars and associated drought trends
DOAJ | 2024
|Competitive Growth Responses of Three Cool-Season Grasses to Salinity and Drought Stresses
British Library Conference Proceedings | 2008
|