A platform for research: civil engineering, architecture and urbanism
Design adaptations in a large and deep urban excavation: Case study
In this paper, design, re-design, and performance of a long-standing very deep excavation, which was originally planned to depth of 38 m, are presented. Over-digging was not planned in the original design, thus the reassessment was performed. Two main topics were followed: deepening to increase the maximum depth of an existent excavation from 38 m to 42.5 m, and feasibility for upgrading a predesigned support system from temporary to permanent support system. The geological investigations in the project site illustrated a type of stiff and cemented coarse-grained alluvium. An observational approach with additional geotechnical investigations and in situ tests was applied. Back analyses of stability of an unsupported access ramp, as well as deformation monitoring of walls, were used in order to review geotechnical design parameters that represent the full-scale behavior of the ground. Additional nails and soldier piles together with building mat foundation were implemented as a complementary lateral support in the retaining system. From an engineering point of view, by assuming a corrosion rate of 0.065 mm/a for existent rebars, according to chemical and electrical resistivity tests, the long-term performance of the revised retaining system was verified by static and pseudo-dynamic ultimate limit state analyses. Performance monitoring during the construction shows that the measured deformation is in the lower limit of the prediction. Keywords: Deep excavation, Field observations, In situ tests, Support system, Adaptive design, Inverse analysis
Design adaptations in a large and deep urban excavation: Case study
In this paper, design, re-design, and performance of a long-standing very deep excavation, which was originally planned to depth of 38 m, are presented. Over-digging was not planned in the original design, thus the reassessment was performed. Two main topics were followed: deepening to increase the maximum depth of an existent excavation from 38 m to 42.5 m, and feasibility for upgrading a predesigned support system from temporary to permanent support system. The geological investigations in the project site illustrated a type of stiff and cemented coarse-grained alluvium. An observational approach with additional geotechnical investigations and in situ tests was applied. Back analyses of stability of an unsupported access ramp, as well as deformation monitoring of walls, were used in order to review geotechnical design parameters that represent the full-scale behavior of the ground. Additional nails and soldier piles together with building mat foundation were implemented as a complementary lateral support in the retaining system. From an engineering point of view, by assuming a corrosion rate of 0.065 mm/a for existent rebars, according to chemical and electrical resistivity tests, the long-term performance of the revised retaining system was verified by static and pseudo-dynamic ultimate limit state analyses. Performance monitoring during the construction shows that the measured deformation is in the lower limit of the prediction. Keywords: Deep excavation, Field observations, In situ tests, Support system, Adaptive design, Inverse analysis
Design adaptations in a large and deep urban excavation: Case study
Amir Alipour (author) / Abolfazl Eslami (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Case History of a Deep Excavation on an Urban Campus
British Library Conference Proceedings | 2003
|Environmental Appraisal for Deep Excavation in Urban
British Library Conference Proceedings | 1997
|Groundwater Lowering in Deep Excavation (Case Study: Foundation Excavation of Shahid Madani Dam)
British Library Conference Proceedings | 2008
|