A platform for research: civil engineering, architecture and urbanism
A Type A Response Regulator Is Involved in Growth in Salix Matsudana Koidz
The cytokinin signaling pathway is important for plant growth and development. To understand the regulatory process, a type A response regulator, SmRR5, in Salix matsudana Koidz., was characterized and functionally analyzed. Gene expression tests showed that SmRR5 was distinctly higher in the leaves and roots of the fast-growing S. matsudana variety 9901 than in those of the slow-growing variety Yanjing (YJ). The transcript abundance was highest in the meristem zone (MEZ), followed by the elongation zone (EZ) and maturation zone (MAZ) in 9901 roots, but it was identically low in YJ roots. Overexpression of SmRR5 in tobacco plants significantly improved plant height, maximum root length (MRL), lateral root number (LRN), fresh weight (FW), dry weight (DW), and flowering time compared with wild-type plants. Transcript profiling revealed that multiple genes associated with flowering (SWEET1, FPF1, and COL12), plant growth (YUCCA8, PIN5, and ARF9a), and adventitious root (AR) formation (Hox3, MYC2, and AGL46) were highly expressed in the overexpression of leaves and roots. Thus, SmRR5 effectively facilitated plant growth and development.
A Type A Response Regulator Is Involved in Growth in Salix Matsudana Koidz
The cytokinin signaling pathway is important for plant growth and development. To understand the regulatory process, a type A response regulator, SmRR5, in Salix matsudana Koidz., was characterized and functionally analyzed. Gene expression tests showed that SmRR5 was distinctly higher in the leaves and roots of the fast-growing S. matsudana variety 9901 than in those of the slow-growing variety Yanjing (YJ). The transcript abundance was highest in the meristem zone (MEZ), followed by the elongation zone (EZ) and maturation zone (MAZ) in 9901 roots, but it was identically low in YJ roots. Overexpression of SmRR5 in tobacco plants significantly improved plant height, maximum root length (MRL), lateral root number (LRN), fresh weight (FW), dry weight (DW), and flowering time compared with wild-type plants. Transcript profiling revealed that multiple genes associated with flowering (SWEET1, FPF1, and COL12), plant growth (YUCCA8, PIN5, and ARF9a), and adventitious root (AR) formation (Hox3, MYC2, and AGL46) were highly expressed in the overexpression of leaves and roots. Thus, SmRR5 effectively facilitated plant growth and development.
A Type A Response Regulator Is Involved in Growth in Salix Matsudana Koidz
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Detecting the Different Responses of Roots and Shoots to Gravity in Salix matsudana (Koidz)
DOAJ | 2021
|Transcriptomic Analysis Reveals Hormonal Control of Shoot Branching in Salix matsudana
DOAJ | 2020
|Mobile Messenger RNAs in Grafts of Salix matsudana Are Associated with Plant Rooting
DOAJ | 2022
|