A platform for research: civil engineering, architecture and urbanism
Bark Stripping by Deer Was More Intensive on New Recruits than on Advanced Regenerants in a Subalpine Forest
Research Highlights: To ensure sustainable forest regeneration, it is important to clarify whether new recruits or advanced regenerants are more likely to be stripped. Therefore, the effects of bark stripping on saplings in subalpine forests with abundant saplings should be analyzed by regeneration mode, but there have been no such studies until now. Background and Objectives: I investigated the effects of bark stripping by Cervus nippon on saplings in a subalpine coniferous forest in central Japan to (1) reveal differences in bark stripping between new recruits and advanced regenerants and (2) clarify the factors affecting survivorship. Materials and Methods: A 50 m × 140 m (0.7 ha) plot was set in the old-growth subalpine coniferous forest. All trees in the plot that were ≥2 m in height were tagged, identified to species, measured diameter at breast height and recorded bark stripping by deer. These trees and new recruits were counted and measured in 2005, 2007, 2012, and 2017. I compared saplings recruited in 2007, 2012, and 2017 (“new recruits”) with existing saplings of the same size (“advanced regenerants”). Results: The density of new recruits of Abies mariesii and Tsuga diversifolia increased, whereas that of Abies veitchii decreased. The proportion of stripped saplings was greater in new recruits than in advanced regenerants, significantly so in A. veitchii, which also had the highest maximum bark stripping ratio. Factors affecting the survivorships applied by the regression tree analysis were the maximum stripping ratio of stems for the two Abies species and the initial size for the T. diversifolia. Conclusions: Bark stripping by deer was more intensive on new recruits than on advanced regenerants in a subalpine forest, and regeneration in canopy gaps might fail because of intensive bark stripping in areas overabundant in deer.
Bark Stripping by Deer Was More Intensive on New Recruits than on Advanced Regenerants in a Subalpine Forest
Research Highlights: To ensure sustainable forest regeneration, it is important to clarify whether new recruits or advanced regenerants are more likely to be stripped. Therefore, the effects of bark stripping on saplings in subalpine forests with abundant saplings should be analyzed by regeneration mode, but there have been no such studies until now. Background and Objectives: I investigated the effects of bark stripping by Cervus nippon on saplings in a subalpine coniferous forest in central Japan to (1) reveal differences in bark stripping between new recruits and advanced regenerants and (2) clarify the factors affecting survivorship. Materials and Methods: A 50 m × 140 m (0.7 ha) plot was set in the old-growth subalpine coniferous forest. All trees in the plot that were ≥2 m in height were tagged, identified to species, measured diameter at breast height and recorded bark stripping by deer. These trees and new recruits were counted and measured in 2005, 2007, 2012, and 2017. I compared saplings recruited in 2007, 2012, and 2017 (“new recruits”) with existing saplings of the same size (“advanced regenerants”). Results: The density of new recruits of Abies mariesii and Tsuga diversifolia increased, whereas that of Abies veitchii decreased. The proportion of stripped saplings was greater in new recruits than in advanced regenerants, significantly so in A. veitchii, which also had the highest maximum bark stripping ratio. Factors affecting the survivorships applied by the regression tree analysis were the maximum stripping ratio of stems for the two Abies species and the initial size for the T. diversifolia. Conclusions: Bark stripping by deer was more intensive on new recruits than on advanced regenerants in a subalpine forest, and regeneration in canopy gaps might fail because of intensive bark stripping in areas overabundant in deer.
Bark Stripping by Deer Was More Intensive on New Recruits than on Advanced Regenerants in a Subalpine Forest
Takuo Nagaike (author)
2020
Article (Journal)
Electronic Resource
Unknown
debarking , Mt. Fuji , mortality , regeneration , sika deer , Plant ecology , QK900-989
Metadata by DOAJ is licensed under CC BY-SA 1.0
Bark Stripping by Deer Disturbs Regeneration in a Larix–Abies Subalpine Forest
DOAJ | 2023
|Fungi Inhabiting Stem Wounds of Quercus robur following Bark Stripping by Deer Animals
DOAJ | 2023
|The Effect of Beech (Fagus sylvatica L.) Bark Stripping by Deer on Depreciation of Wood
DOAJ | 2022
|Wood-to-bark adhesion of subalpine fir (Abies lasiocarpa) in extreme temperatures
British Library Online Contents | 2004
|