A platform for research: civil engineering, architecture and urbanism
Forest Cover Change Monitoring Using Sub-Pixel Mapping with Edge-Matching Correction
Sentinel-2 serves as a crucial data source for monitoring forest cover change. In this study, a sub-pixel mapping of forest cover is performed on Sentinel-2 images, downscaling the spatial resolution of the positioned results to 2.5 m, enabling sub-pixel-level forest cover monitoring. A novel sub-pixel mapping with edge-matching correction is proposed on the basis of the Sentinel-2 images, combining edge-matching technology to extract the forest boundary of Jilin-1 images at sub-meter level as spatial constraint information for sub-pixel mapping. This approach enables accurate mapping of forest cover, surpassing traditional pixel-level monitoring in terms of accuracy and robustness. The corrected mapping method allows more spatial detail to be restored at forest boundaries, monitoring forest changes at a smaller scale, which is highly similar to actual forest boundaries on the surface. The overall accuracy of the modified sub-pixel mapping method reaches 93.15%, an improvement of 1.96% over the conventional Sub-pixel-pixel Spatial Attraction Model (SPSAM). Additionally, the kappa coefficient improved by 0.15 to reach 0.892 during the correction. In summary, this study introduces a new method of forest cover monitoring, enhancing the accuracy and efficiency of acquiring forest resource information. This approach provides a fresh perspective in the field of forest cover monitoring, especially for monitoring small deforestation and forest degradation activities.
Forest Cover Change Monitoring Using Sub-Pixel Mapping with Edge-Matching Correction
Sentinel-2 serves as a crucial data source for monitoring forest cover change. In this study, a sub-pixel mapping of forest cover is performed on Sentinel-2 images, downscaling the spatial resolution of the positioned results to 2.5 m, enabling sub-pixel-level forest cover monitoring. A novel sub-pixel mapping with edge-matching correction is proposed on the basis of the Sentinel-2 images, combining edge-matching technology to extract the forest boundary of Jilin-1 images at sub-meter level as spatial constraint information for sub-pixel mapping. This approach enables accurate mapping of forest cover, surpassing traditional pixel-level monitoring in terms of accuracy and robustness. The corrected mapping method allows more spatial detail to be restored at forest boundaries, monitoring forest changes at a smaller scale, which is highly similar to actual forest boundaries on the surface. The overall accuracy of the modified sub-pixel mapping method reaches 93.15%, an improvement of 1.96% over the conventional Sub-pixel-pixel Spatial Attraction Model (SPSAM). Additionally, the kappa coefficient improved by 0.15 to reach 0.892 during the correction. In summary, this study introduces a new method of forest cover monitoring, enhancing the accuracy and efficiency of acquiring forest resource information. This approach provides a fresh perspective in the field of forest cover monitoring, especially for monitoring small deforestation and forest degradation activities.
Forest Cover Change Monitoring Using Sub-Pixel Mapping with Edge-Matching Correction
Siran Xia (author) / Zhigao Yang (author) / Gui Zhang (author) / Xin Wu (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Sub-pixel-scale Land Cover Map Updating by Integrating Change Detection and Sub-Pixel Mapping
Online Contents | 2015
|Mapping sub-pixel forest cover in Europe using AVHRR data and national and regional statistics
Online Contents | 2002
|Ordinal Level Classification of Sub-Pixel Tropical Forest Cover
Online Contents | 1994
|