A platform for research: civil engineering, architecture and urbanism
Identification of Urban Jobs–Housing Sites Based on Online Car-Hailing Data
With the development of cities, the organization of jobs–housing space is becoming more complex, and the rapid, effective identification of both residences and workplaces is crucial to sustainable urban development. The long time series of online car-hailing data conveys a large amount of activity trajectory information about urban populations, which can represent the social functions of urban areas, including workplaces and residences. This paper constructs a jobs–housing site identification model based on human activity characteristics. This model uses a time series dataset of online car hailing that characterizes the changes in regional passenger flow and implements the similarity measure and semi-supervised learning of time series to determine the classification of urban areas. Then, the jobs–housing factor method is introduced to extract the jobs–housing characteristics of different regions, which achieves the jobs–housing site identification. Finally, the empirical analysis of Chengdu city shows that the proposed model method can effectively mine the distribution of urban jobs–housing sites. The identification results are consistent with the actual situation, and the combination of the time series similarity and the jobs–housing feature variable improves the identification effect, providing a new way of thinking about urban jobs–housing space research.
Identification of Urban Jobs–Housing Sites Based on Online Car-Hailing Data
With the development of cities, the organization of jobs–housing space is becoming more complex, and the rapid, effective identification of both residences and workplaces is crucial to sustainable urban development. The long time series of online car-hailing data conveys a large amount of activity trajectory information about urban populations, which can represent the social functions of urban areas, including workplaces and residences. This paper constructs a jobs–housing site identification model based on human activity characteristics. This model uses a time series dataset of online car hailing that characterizes the changes in regional passenger flow and implements the similarity measure and semi-supervised learning of time series to determine the classification of urban areas. Then, the jobs–housing factor method is introduced to extract the jobs–housing characteristics of different regions, which achieves the jobs–housing site identification. Finally, the empirical analysis of Chengdu city shows that the proposed model method can effectively mine the distribution of urban jobs–housing sites. The identification results are consistent with the actual situation, and the combination of the time series similarity and the jobs–housing feature variable improves the identification effect, providing a new way of thinking about urban jobs–housing space research.
Identification of Urban Jobs–Housing Sites Based on Online Car-Hailing Data
Shuoben Bi (author) / Luye Wang (author) / Shaoli Liu (author) / Lili Zhang (author) / Cong Yuan (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Spatiotemporal Prediction of Urban Online Car-Hailing Travel Demand Based on Transformer Network
DOAJ | 2022
|The Jobs-Housing Balance and Urban Commuting
Online Contents | 1997
|