A platform for research: civil engineering, architecture and urbanism
Modeling River Ice Breakup Dates by k-Nearest Neighbor Ensemble
Forecasting of river ice breakup timing is directly related to the local ice-caused flooding management. However, river ice forecasting using k-nearest neighbor (kNN) algorithms is limited. Thus, a kNN stacking ensemble learning (KSEL) method was developed and applied to forecasting breakup dates (BDs) for the Athabasca River at Fort McMurray in Canada. The kNN base models with diverse inputs and distance functions were developed and their outputs were further combined. The performance of these models was examined using the leave-one-out cross validation method based on the historical BDs and corresponding climate and river conditions in 1980−2015. The results indicated that the kNN with the Chebychev distance functions generally outperformed other kNN base models. Through the simple average methods, the ensemble kNN models using multiple-type (Mahalanobis and Chebychev) distance functions had the overall optimal performance among all models. The improved performance indicates that the kNN ensemble is a promising tool for river ice forecasting. The structure of optimal models also implies that the breakup timing is mainly linked with temperature and water flow conditions before breakup as well as during and just after freeze up.
Modeling River Ice Breakup Dates by k-Nearest Neighbor Ensemble
Forecasting of river ice breakup timing is directly related to the local ice-caused flooding management. However, river ice forecasting using k-nearest neighbor (kNN) algorithms is limited. Thus, a kNN stacking ensemble learning (KSEL) method was developed and applied to forecasting breakup dates (BDs) for the Athabasca River at Fort McMurray in Canada. The kNN base models with diverse inputs and distance functions were developed and their outputs were further combined. The performance of these models was examined using the leave-one-out cross validation method based on the historical BDs and corresponding climate and river conditions in 1980−2015. The results indicated that the kNN with the Chebychev distance functions generally outperformed other kNN base models. Through the simple average methods, the ensemble kNN models using multiple-type (Mahalanobis and Chebychev) distance functions had the overall optimal performance among all models. The improved performance indicates that the kNN ensemble is a promising tool for river ice forecasting. The structure of optimal models also implies that the breakup timing is mainly linked with temperature and water flow conditions before breakup as well as during and just after freeze up.
Modeling River Ice Breakup Dates by k-Nearest Neighbor Ensemble
Wei Sun (author) / Ying Lv (author) / Gongchen Li (author) / Yumin Chen (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under ​CC BY-SA 1.0
DOAJ | 2023
|Nearest neighbor distances in uniaxial fiber composites
British Library Online Contents | 2004
|Nearest Neighbor Probabilistic Model for Aluminum Polycrystals
Online Contents | 2010
|Improved K-Nearest Neighbor Weather Generating Model
British Library Online Contents | 2007
|