A platform for research: civil engineering, architecture and urbanism
Adsorption of Malachite Green and Pb2+ by KMnO4-Modified Biochar: Insights and Mechanisms
In this study, the feasibility and mechanism of Pb2+ and malachite green (MG) adsorption from wastewater using KMnO4-modified bamboo biochar (KBC) was evaluated. The KBC was characterized by SEM–EDS, XRD, FTIR and XPS. The adsorption results for Pb2+ conformed to pseudo-second-order kinetics and the Langmuir model theory. Unlike the case for Pb2+, the Freundlich model better described the adsorption behaviour of MG, indicating that adsorption occurred within multiple molecular layers. Both pseudo-first-order kinetics and pseudo-second-order kinetics fit the MG adsorption data well, indicating that physical adsorption was involved in the adsorption process. In addition, the maximum adsorption capacity for Pb2+/MG was 123.47/1111.11 mg·g−1, KBC had high adsorption capacities for Pb2+ and MG, and the mechanisms of Pb2+ adsorption were mineral precipitation, functional group complexation, and cation-π interactions, while the main mechanisms for MG adsorption were pore filling, π–π interactions, and functional group complexation. In this study, KMnO4-modified biochar was prepared and used as an efficient adsorbent, and showed good application prospects for treatment of wastewater containing MG and Pb2+.
Adsorption of Malachite Green and Pb2+ by KMnO4-Modified Biochar: Insights and Mechanisms
In this study, the feasibility and mechanism of Pb2+ and malachite green (MG) adsorption from wastewater using KMnO4-modified bamboo biochar (KBC) was evaluated. The KBC was characterized by SEM–EDS, XRD, FTIR and XPS. The adsorption results for Pb2+ conformed to pseudo-second-order kinetics and the Langmuir model theory. Unlike the case for Pb2+, the Freundlich model better described the adsorption behaviour of MG, indicating that adsorption occurred within multiple molecular layers. Both pseudo-first-order kinetics and pseudo-second-order kinetics fit the MG adsorption data well, indicating that physical adsorption was involved in the adsorption process. In addition, the maximum adsorption capacity for Pb2+/MG was 123.47/1111.11 mg·g−1, KBC had high adsorption capacities for Pb2+ and MG, and the mechanisms of Pb2+ adsorption were mineral precipitation, functional group complexation, and cation-π interactions, while the main mechanisms for MG adsorption were pore filling, π–π interactions, and functional group complexation. In this study, KMnO4-modified biochar was prepared and used as an efficient adsorbent, and showed good application prospects for treatment of wastewater containing MG and Pb2+.
Adsorption of Malachite Green and Pb2+ by KMnO4-Modified Biochar: Insights and Mechanisms
Hua Deng (author) / Junyu Zhang (author) / Rui Huang (author) / Wei Wang (author) / Mianwu Meng (author) / Lening Hu (author) / Weixing Gan (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2022
|Study of malachite green adsorption by organically modified clay using a batch method
British Library Online Contents | 2013
|Study of malachite green adsorption by organically modified clay using a batch method
British Library Online Contents | 2013
|