A platform for research: civil engineering, architecture and urbanism
Assessment of Sweet Sorghum-Based Ethanol Potential in China within the Water–Energy–Food Nexus Framework
As bio-ethanol is developing rapidly, its impacts on food security, water security and the environment begin to receive worldwide attention, especially within the Water–Energy–Food nexus framework. The aim of this study is to present an integrated method of assessing sweet sorghum-based ethanol potential in China in compliance with the Water–Energy–Food nexus principles. Life cycle assessment is coupled with the DSSAT (the Decision Support System for Agrotechnology Transfer) model and geographic information technology to evaluate the spatial distribution of water consumption, net energy gain and Greenhouse Gas emission reduction potentials of developing sweet sorghum-based ethanol on marginal lands instead of cultivated land in China. Marginal lands with high water stress are excluded from the results considering their unsuitability of developing sweet sorghum-based ethanol due to possible energy–water conflicts. The results show that the water consumption, net energy gain and Greenhouse Gas emission reduction of developing sweet sorghum-based ethanol in China are evaluated as 348.95 billion m3, 182.62 billion MJ, and 2.47 million t carbon per year, respectively. Some regions such as Yunnan Province in south China should be given priority for sweet sorghum-based ethanol development, while Jilin Province and Heilongjiang Province need further studies and assessment.
Assessment of Sweet Sorghum-Based Ethanol Potential in China within the Water–Energy–Food Nexus Framework
As bio-ethanol is developing rapidly, its impacts on food security, water security and the environment begin to receive worldwide attention, especially within the Water–Energy–Food nexus framework. The aim of this study is to present an integrated method of assessing sweet sorghum-based ethanol potential in China in compliance with the Water–Energy–Food nexus principles. Life cycle assessment is coupled with the DSSAT (the Decision Support System for Agrotechnology Transfer) model and geographic information technology to evaluate the spatial distribution of water consumption, net energy gain and Greenhouse Gas emission reduction potentials of developing sweet sorghum-based ethanol on marginal lands instead of cultivated land in China. Marginal lands with high water stress are excluded from the results considering their unsuitability of developing sweet sorghum-based ethanol due to possible energy–water conflicts. The results show that the water consumption, net energy gain and Greenhouse Gas emission reduction of developing sweet sorghum-based ethanol in China are evaluated as 348.95 billion m3, 182.62 billion MJ, and 2.47 million t carbon per year, respectively. Some regions such as Yunnan Province in south China should be given priority for sweet sorghum-based ethanol development, while Jilin Province and Heilongjiang Province need further studies and assessment.
Assessment of Sweet Sorghum-Based Ethanol Potential in China within the Water–Energy–Food Nexus Framework
Xiaoxi Yan (author) / Dong Jiang (author) / Jingying Fu (author) / Mengmeng Hao (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Online Contents | 2016
|