A platform for research: civil engineering, architecture and urbanism
Experimental Study on Performance of Steel Fiber-Reinforced Concrete V-Shaped Columns
Structural engineers have used V-shaped columns based on technical requirements. The inclination of the V-shaped column underlines the individual purpose of the base floor. However, there is no any specification or guidance on the design of V-shaped columns to date. The aim of this study is to investigate the behavior of V-shaped reinforced concrete columns with three angles between columns (30°, 60°, and 90°) in order for the results to be used in the design and analysis of the V-shaped column. The impact of using a 1.5% dosage of micro-straight-steel fiber (MSSF) in the concrete mixture was also studied. The results showed that the V-shaped column with 30°, regardless of the concrete type (with and without MSSFs), exhibited crushing at legends when the sample reached the ultimate load, while no cracks occurred at the legends during the test for the other V-shaped columns. Upon increasing the angle of inclination of the V-shaped columns, the ultimate load capacity was decreased by 24%, 23%, and 20% for V-shaped columns with 30°, 60°, and 90° angles of inclination, respectively. The addition of MSSFs in the concrete significantly improved the ultimate axial load and the bending moment compared to the reference specimens with the normal reinforced concrete (NRC). The steel-fiber-reinforced concrete (SFRC) vertical column specimen demonstrated the highest increase in axial load, and the other SFRC V-shaped and flexural specimens showed a minor increase compared to the NRC specimens.
Experimental Study on Performance of Steel Fiber-Reinforced Concrete V-Shaped Columns
Structural engineers have used V-shaped columns based on technical requirements. The inclination of the V-shaped column underlines the individual purpose of the base floor. However, there is no any specification or guidance on the design of V-shaped columns to date. The aim of this study is to investigate the behavior of V-shaped reinforced concrete columns with three angles between columns (30°, 60°, and 90°) in order for the results to be used in the design and analysis of the V-shaped column. The impact of using a 1.5% dosage of micro-straight-steel fiber (MSSF) in the concrete mixture was also studied. The results showed that the V-shaped column with 30°, regardless of the concrete type (with and without MSSFs), exhibited crushing at legends when the sample reached the ultimate load, while no cracks occurred at the legends during the test for the other V-shaped columns. Upon increasing the angle of inclination of the V-shaped columns, the ultimate load capacity was decreased by 24%, 23%, and 20% for V-shaped columns with 30°, 60°, and 90° angles of inclination, respectively. The addition of MSSFs in the concrete significantly improved the ultimate axial load and the bending moment compared to the reference specimens with the normal reinforced concrete (NRC). The steel-fiber-reinforced concrete (SFRC) vertical column specimen demonstrated the highest increase in axial load, and the other SFRC V-shaped and flexural specimens showed a minor increase compared to the NRC specimens.
Experimental Study on Performance of Steel Fiber-Reinforced Concrete V-Shaped Columns
Rafea F. Hassan (author) / Nabeel H. Al-Salim (author) / Nisreen S. Mohammed (author) / Husam H. Hussein (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Experimental Study on Steel Reinforced Concrete Special-shaped Columns
British Library Conference Proceedings | 2005
|Study on Ductility Performance of T-Shaped Section Steel Reinforced Concrete Columns
British Library Conference Proceedings | 2013
|British Library Conference Proceedings | 2012
|Experimental Study on Mechanical Property of Steel Reinforced Concrete Short Columns of T-Shaped
British Library Online Contents | 2007
|