A platform for research: civil engineering, architecture and urbanism
A parametric study of concrete runway pavement layers depression under impact load
Introduction. Airport runway pavement is always subjected to considerable impact loads as a result of aircraft landing heavily on the concrete surface. As a result, runway pavements must have adequate strength and durability capability to avoid damage caused by a hard impact, such as surface deflection downward or penetration, because repair works are inconvenient within the operating conditions of the airport and increase the service life cost of the pavement structure. 3DFE research is carried out to identify some beneficial elements in influencing the concrete and base layers deformation of the runway pavement. Materials and methods. The research developed 3D finite element model from the previews study by using the Explicit Dynamics model using the Ansys workbench. The concrete characteristics such as slab thickness, concrete density, modulus of elasticity, flexural tensile strength, and compressive strength of the runway pavement are tested, while the impactor weight and velocity are chosen and investigated too. Results. The results included the effect of 4–7 different values for each factor. The depression of the concrete and base layers is presented. Conclusions. The main conclusion that can be drawn from this work is that flexural tensile strength, compressive strength, and slab thickness have a significant effect on the concrete depression of the runway pavement as well as the impactor weight and velocity.
A parametric study of concrete runway pavement layers depression under impact load
Introduction. Airport runway pavement is always subjected to considerable impact loads as a result of aircraft landing heavily on the concrete surface. As a result, runway pavements must have adequate strength and durability capability to avoid damage caused by a hard impact, such as surface deflection downward or penetration, because repair works are inconvenient within the operating conditions of the airport and increase the service life cost of the pavement structure. 3DFE research is carried out to identify some beneficial elements in influencing the concrete and base layers deformation of the runway pavement. Materials and methods. The research developed 3D finite element model from the previews study by using the Explicit Dynamics model using the Ansys workbench. The concrete characteristics such as slab thickness, concrete density, modulus of elasticity, flexural tensile strength, and compressive strength of the runway pavement are tested, while the impactor weight and velocity are chosen and investigated too. Results. The results included the effect of 4–7 different values for each factor. The depression of the concrete and base layers is presented. Conclusions. The main conclusion that can be drawn from this work is that flexural tensile strength, compressive strength, and slab thickness have a significant effect on the concrete depression of the runway pavement as well as the impactor weight and velocity.
A parametric study of concrete runway pavement layers depression under impact load
Hayder Abbas Ashour AlAraza (author) / Kharun Mahmud (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Performance of protective concrete runway pavement under aircraft impact loading
Taylor & Francis Verlag | 2020
|Performance of Plain Concrete Runway Pavement
British Library Online Contents | 1998
|Performance of Plain Concrete Runway Pavement
Online Contents | 1998
|Analysis of runway pavement response under aircraft moving load by FEM
Emerald Group Publishing | 2018
|Concrete pavement slab efficient connecting device for runway assembly
European Patent Office | 2024
|