A platform for research: civil engineering, architecture and urbanism
Effects of Heat Treatment on the Chemical Composition and Microstructure of Cupressus funebris Endl. Wood
The effects of heat treatment on Cupressus funebris Endl. wood were examined under different combinations of temperature, time, and pressure. The chemical composition, crystallinity, and microstructure of heat-treated wood flour and specimens were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Vacuum heat treatment led to changes in the functional groups and microstructure of C. funebris wood, and the relative lignin content decreased with increasing treatment temperature, which was significant at lower negative pressures. Cellulose crystallinity showed a change rule of first increasing and then decreasing throughout the heat treatment range, and the relative crystallinity ranged from 102.46% to 116.39%. The cellulose treated at 120 °C for 5 h at 0.02 MPa had the highest crystallinity of 44.65%. These results indicate that although heat treatment can improve cellulose crystallinity, very high temperatures can lead to decreased crystallinity. The morphology and structure of the cell wall remained stable throughout the heat treatment range; however, at elevated temperatures, slight deformation occurred, along with rupture of the intercellular layer.
Effects of Heat Treatment on the Chemical Composition and Microstructure of Cupressus funebris Endl. Wood
The effects of heat treatment on Cupressus funebris Endl. wood were examined under different combinations of temperature, time, and pressure. The chemical composition, crystallinity, and microstructure of heat-treated wood flour and specimens were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Vacuum heat treatment led to changes in the functional groups and microstructure of C. funebris wood, and the relative lignin content decreased with increasing treatment temperature, which was significant at lower negative pressures. Cellulose crystallinity showed a change rule of first increasing and then decreasing throughout the heat treatment range, and the relative crystallinity ranged from 102.46% to 116.39%. The cellulose treated at 120 °C for 5 h at 0.02 MPa had the highest crystallinity of 44.65%. These results indicate that although heat treatment can improve cellulose crystallinity, very high temperatures can lead to decreased crystallinity. The morphology and structure of the cell wall remained stable throughout the heat treatment range; however, at elevated temperatures, slight deformation occurred, along with rupture of the intercellular layer.
Effects of Heat Treatment on the Chemical Composition and Microstructure of Cupressus funebris Endl. Wood
Jianhua Lyu (author) / Jialei Wang (author) / Ming Chen (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0