A platform for research: civil engineering, architecture and urbanism
Limits and possibilities of thermodynamic modelling of autogenous self-healing of concrete
Autogenous self-healing of water retaining concrete structures is included in Eurocode 1992-3 as a possibility to heal cracks up to a width of 200 μm without additional repair. In this self-healing scenario water flow through a crack should result in a progressive closure of the fracture, mainly due to CaCO3 precipitation, when certain hydraulic gradients are met, the pH of the water is > 5.5 and the concentration of CO2 in the water remains < 40 mg*L-1. The material composition is not further restricted by the regulation. However, despite standardization, the healing effect seems to be random in practice, which requires further research, while experiments aimed at quantifying autogenous self-healing are expensive and time-consuming. Thermodynamic models could support in estimating the effect of different environments such as groundwater or seawater exposure on autogenous self-healing. Moreover, adjusting the water chemistry according to the conditions of different construction sites and changing the material design could easily be considered. In this study thermodynamic models of a hydrated CEM I 52.5 R paste that is exposed to either simulated groundwater or seawater are discussed concerning the influence on autogenous self-healing and compared to experimental and literature data.
Limits and possibilities of thermodynamic modelling of autogenous self-healing of concrete
Autogenous self-healing of water retaining concrete structures is included in Eurocode 1992-3 as a possibility to heal cracks up to a width of 200 μm without additional repair. In this self-healing scenario water flow through a crack should result in a progressive closure of the fracture, mainly due to CaCO3 precipitation, when certain hydraulic gradients are met, the pH of the water is > 5.5 and the concentration of CO2 in the water remains < 40 mg*L-1. The material composition is not further restricted by the regulation. However, despite standardization, the healing effect seems to be random in practice, which requires further research, while experiments aimed at quantifying autogenous self-healing are expensive and time-consuming. Thermodynamic models could support in estimating the effect of different environments such as groundwater or seawater exposure on autogenous self-healing. Moreover, adjusting the water chemistry according to the conditions of different construction sites and changing the material design could easily be considered. In this study thermodynamic models of a hydrated CEM I 52.5 R paste that is exposed to either simulated groundwater or seawater are discussed concerning the influence on autogenous self-healing and compared to experimental and literature data.
Limits and possibilities of thermodynamic modelling of autogenous self-healing of concrete
Lahmann Daniel (author) / Kessler Sylvia (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Autogenous Healing of Concrete
British Library Conference Proceedings | 2005
|Autogenous Self-Healing: A Better Solution for Concrete
ASCE | 2019
|Modelling of autogenous healing in ultra high performance concrete
Tema Archive | 2014
|Modelling of autogenous healing in ultra high performance concrete
British Library Online Contents | 2014
|Modelling of autogenous healing in ultra high performance concrete
Online Contents | 2014
|