A platform for research: civil engineering, architecture and urbanism
Nitrogen Removal Ability and Characteristics of the Laboratory-Scale Tidal Flow Constructed Wetlands for Treating Ammonium-Nitrogen Contaminated Groundwater
Constructed wetlands (CWs) are an effective technology to remove organic compounds and nitrogen (N) from wastewaters and contaminated environmental waters. However, the feasibility of CWs for ammonium-N (NH4+-N)-contaminated groundwater treatment is unclear. In this study, zeolite-based laboratory-scale CW was operated as a tidal flow CW with a cycle consisting of 21-h flooded and 3-h rest, and used to treat NH4+-N (30 mg L−1) contaminated groundwater. In addition to NH4+-N, nitrite (NO2−-N) and nitrate (NO3−-N) were also not detected in the effluents from the tidal flow CW. The N removal constant remained high for a longer period of time compared to the continuous flow CW. The higher and more sustainable N removal of the tidal flow CW was due to the in-situ biological regeneration of zeolite NH4+-N adsorption capacity. Vegetation of common reeds in tidal flow zeolite-based CW enhanced nitrification and heterotrophic denitrification activities, and increased the functional genes of nitrification (AOB-amoA and nxrA) and denitrification (narG, nirK, nirS, and nosZ) by 2‒3 orders of magnitude, compared to CW without vegetation. The results suggest that the combination of zeolite substrate, tidal flow, and vegetation is key for the highly efficient and sustainable N removal from NH4+-N contaminated groundwater.
Nitrogen Removal Ability and Characteristics of the Laboratory-Scale Tidal Flow Constructed Wetlands for Treating Ammonium-Nitrogen Contaminated Groundwater
Constructed wetlands (CWs) are an effective technology to remove organic compounds and nitrogen (N) from wastewaters and contaminated environmental waters. However, the feasibility of CWs for ammonium-N (NH4+-N)-contaminated groundwater treatment is unclear. In this study, zeolite-based laboratory-scale CW was operated as a tidal flow CW with a cycle consisting of 21-h flooded and 3-h rest, and used to treat NH4+-N (30 mg L−1) contaminated groundwater. In addition to NH4+-N, nitrite (NO2−-N) and nitrate (NO3−-N) were also not detected in the effluents from the tidal flow CW. The N removal constant remained high for a longer period of time compared to the continuous flow CW. The higher and more sustainable N removal of the tidal flow CW was due to the in-situ biological regeneration of zeolite NH4+-N adsorption capacity. Vegetation of common reeds in tidal flow zeolite-based CW enhanced nitrification and heterotrophic denitrification activities, and increased the functional genes of nitrification (AOB-amoA and nxrA) and denitrification (narG, nirK, nirS, and nosZ) by 2‒3 orders of magnitude, compared to CW without vegetation. The results suggest that the combination of zeolite substrate, tidal flow, and vegetation is key for the highly efficient and sustainable N removal from NH4+-N contaminated groundwater.
Nitrogen Removal Ability and Characteristics of the Laboratory-Scale Tidal Flow Constructed Wetlands for Treating Ammonium-Nitrogen Contaminated Groundwater
Amit Kumar Maharjan (author) / Kazuhiro Mori (author) / Tadashi Toyama (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Microbial nitrogen transformations in constructed wetlands treating contaminated groundwater
UB Braunschweig | 2015
|Microbial nitrogen transformations in constructed wetlands treating contaminated groundwater
TIBKAT | 2015
|British Library Conference Proceedings | 1995
|