A platform for research: civil engineering, architecture and urbanism
Estimating Future Peak Water Demand with a Regression Model Considering Climate Indices
Although Austria is a water-rich country, impacts of climate change on water supply are already noticeable. Some regions were affected by water scarcity in recent years. Due to climate change, an increase in peak water demand is expected in the future. Therefore, water demand prediction models that include climate indices are of interest. In this paper, we present a general multiple linear regression (GMLR) model that can be applied to selected study sites. We compared the performance of the GMLR model with different modeling approaches, i.e., stepwise multiple linear regression, support vector regression, random forest regression and a neural network approach. All models were trained with water demand and weather data reaching back several years and tested with the last available observation year. The applied modeling approaches achieved a similar performance. As a second step, the GMLR model was used to estimate the peak water demands for the time period 2025–2050. For the future water demand estimate, 16 different climate projections were used. These climate projections represent the worst-case climate change scenario (RCP 8.5). The expected increase in peak water demand could be confirmed with the modeling approach. An increase in peak water demand by 3.5% compared to the reference period was estimated.
Estimating Future Peak Water Demand with a Regression Model Considering Climate Indices
Although Austria is a water-rich country, impacts of climate change on water supply are already noticeable. Some regions were affected by water scarcity in recent years. Due to climate change, an increase in peak water demand is expected in the future. Therefore, water demand prediction models that include climate indices are of interest. In this paper, we present a general multiple linear regression (GMLR) model that can be applied to selected study sites. We compared the performance of the GMLR model with different modeling approaches, i.e., stepwise multiple linear regression, support vector regression, random forest regression and a neural network approach. All models were trained with water demand and weather data reaching back several years and tested with the last available observation year. The applied modeling approaches achieved a similar performance. As a second step, the GMLR model was used to estimate the peak water demands for the time period 2025–2050. For the future water demand estimate, 16 different climate projections were used. These climate projections represent the worst-case climate change scenario (RCP 8.5). The expected increase in peak water demand could be confirmed with the modeling approach. An increase in peak water demand by 3.5% compared to the reference period was estimated.
Estimating Future Peak Water Demand with a Regression Model Considering Climate Indices
Anika Stelzl (author) / Michael Pointl (author) / Daniela Fuchs-Hanusch (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under ​CC BY-SA 1.0
Forecasting Urban Peak Water Demand Based on Climate Indices and Demographic Trends
DOAJ | 2023
|Estimating Peak Daily Water Demand under Different Climate Change and Vacation Scenarios
DOAJ | 2019
|Online Contents | 2007
|British Library Conference Proceedings | 2007
|ESTIMATING DEMAND OF TURKISH ENERGY MARKET: A MULTIVARIATE REGRESSION MODEL
BASE | 2019
|