A platform for research: civil engineering, architecture and urbanism
Biochar Phosphate Fertilizer Loaded with Urea Preserves Available Nitrogen Longer than Conventional Urea
Biochar, a carbon-rich material obtained by pyrolysis of organic wastes, is an attractive matrix for loading nutrients and producing enhanced efficiency fertilizers. In this study, poultry litter (PL) was enriched with phosphoric acid (H3PO4) and MgO to produce a biochar-based fertilizer (PLB), which was loaded with urea in a 4:5 ratio (PLB:urea, w/w) to generate a 15–15% N–P slow-release fertilizer (PLB–N) to be used in a single application to soil. A greenhouse experiment was carried out in which a common bean was cultivated followed by maize to evaluate the agronomic efficiency and the residual effect of fertilization with PLB–N in Ultisol. Six treatments were tested, including four doses of N (100, 150, 200, and 250 mg kg−1) via PLB–N in a single application, a control with triple superphosphate (TSP—applied once) and urea (split three times), and a control without N-P fertilization. The greatest effect of PLB–N was the residual effect of fertilization, in which maize showed a linear response to the N doses applied via PLB–N but showed no response to conventional TSP + urea fertilization. Biochar has the potential as a loading matrix to preserve N availability and increase residual effects and N-use efficiency by plants.
Biochar Phosphate Fertilizer Loaded with Urea Preserves Available Nitrogen Longer than Conventional Urea
Biochar, a carbon-rich material obtained by pyrolysis of organic wastes, is an attractive matrix for loading nutrients and producing enhanced efficiency fertilizers. In this study, poultry litter (PL) was enriched with phosphoric acid (H3PO4) and MgO to produce a biochar-based fertilizer (PLB), which was loaded with urea in a 4:5 ratio (PLB:urea, w/w) to generate a 15–15% N–P slow-release fertilizer (PLB–N) to be used in a single application to soil. A greenhouse experiment was carried out in which a common bean was cultivated followed by maize to evaluate the agronomic efficiency and the residual effect of fertilization with PLB–N in Ultisol. Six treatments were tested, including four doses of N (100, 150, 200, and 250 mg kg−1) via PLB–N in a single application, a control with triple superphosphate (TSP—applied once) and urea (split three times), and a control without N-P fertilization. The greatest effect of PLB–N was the residual effect of fertilization, in which maize showed a linear response to the N doses applied via PLB–N but showed no response to conventional TSP + urea fertilization. Biochar has the potential as a loading matrix to preserve N availability and increase residual effects and N-use efficiency by plants.
Biochar Phosphate Fertilizer Loaded with Urea Preserves Available Nitrogen Longer than Conventional Urea
Cristiane Francisca Barbosa (author) / Dehon Aparecido Correa (author) / Jefferson Santana da Silva Carneiro (author) / Leônidas Carrijo Azevedo Melo (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Gaseous Nitrogen Losses from Tropical Soils with Liquid or Granular Urea Fertilizer Application
DOAJ | 2021
|Electrical conductivity of urea-formaldehyde-cellulose composites loaded with copper
British Library Online Contents | 2011
|