A platform for research: civil engineering, architecture and urbanism
An Automated Space-Based Graph Generation Framework for Building Energy Consumption Estimation
The 3D information in Building Information Modeling (BIM) has received significant interest for smart city applications. Recently, employing Industry Foundation Classes (IFC) for BIM in data-driven methods for Building Energy Consumption Estimation (BECE) has gained momentum because of the enriched geometric and semantic information. However, despite extensive studies on applying the IFC data in BECE analysis, employing the full potential of the BIM remains poor due to its complex data model and incompatibility with data-driven algorithms. This paper proposes a framework to extract accurate semantic, geometry, and topology information from the room-level (space) IFC schema by introducing new geo-computation algorithms to deal with these challenges. Additionally, we define a new topological weighted relationship between spaces in different stories by combining common geometry area with energy resistance value. Eventually, the proposed weighted space-based graph will be constructed to decrease the original complexity of the IFC model, and it is compatible with graph-based machine learning algorithms. The results are promising, with more than 90% accuracy in extracting the geometry information for the convex and non-convex polyhedron rooms and 100% accuracy in detecting vertical and horizontal adjacent rooms. This study confirms the proposed approach’s efficiency, accuracy, and feasibility for space-based BECE analysis.
An Automated Space-Based Graph Generation Framework for Building Energy Consumption Estimation
The 3D information in Building Information Modeling (BIM) has received significant interest for smart city applications. Recently, employing Industry Foundation Classes (IFC) for BIM in data-driven methods for Building Energy Consumption Estimation (BECE) has gained momentum because of the enriched geometric and semantic information. However, despite extensive studies on applying the IFC data in BECE analysis, employing the full potential of the BIM remains poor due to its complex data model and incompatibility with data-driven algorithms. This paper proposes a framework to extract accurate semantic, geometry, and topology information from the room-level (space) IFC schema by introducing new geo-computation algorithms to deal with these challenges. Additionally, we define a new topological weighted relationship between spaces in different stories by combining common geometry area with energy resistance value. Eventually, the proposed weighted space-based graph will be constructed to decrease the original complexity of the IFC model, and it is compatible with graph-based machine learning algorithms. The results are promising, with more than 90% accuracy in extracting the geometry information for the convex and non-convex polyhedron rooms and 100% accuracy in detecting vertical and horizontal adjacent rooms. This study confirms the proposed approach’s efficiency, accuracy, and feasibility for space-based BECE analysis.
An Automated Space-Based Graph Generation Framework for Building Energy Consumption Estimation
Hamid Kiavarz (author) / Mojgan Jadidi (author) / Abbas Rajabifard (author) / Gunho Sohn (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Graph framework for automated urban energy system modeling
TIBKAT | 2017
|Graph framework for automated urban energy system modeling
UB Braunschweig | 2017
|