A platform for research: civil engineering, architecture and urbanism
There is a demand for flood control in densely populated river network areas. Therefore, small floodgates are used for long-term and rapid water flow regulation in such contexts. However, people often disregard these floodgates’ potential interference with the natural water environment. This study focused on an urban floodgate-controlled reach and monitored the monthly data of four main pollutant indicators (TN, TP, CODMn, and NH3-N) from 2016 to 2018 at six fixed sampling points (S1–S6). The difference analysis and cluster analysis results indicated that floodgate adjustments were the dominant driving factor of water quality changes in the reach, with pollutant concentration differences observed between the floodgate opening and closing periods. The results of the Canadian Council of Ministers of the Environment Water Quality Index evaluation showed that the water quality of the floodgate-controlled reach was categorized as “marginal” or “poor”. It is particularly important to note that the concentration of nitrogen compounds exceeded the allowable limits. The results of the Mann–Kendall trend and time series analyses revealed an overall upward trend in NH3-N concentration and a localized upward trend in TP concentration and presented periodic concentration fluctuations of four pollutants (TN, TP, CODMn, and NH3-N). This study highlights that flood control management using small floodgates can pose a risk of deteriorating water quality. Therefore, it is necessary to develop scientific water quality management methods.
There is a demand for flood control in densely populated river network areas. Therefore, small floodgates are used for long-term and rapid water flow regulation in such contexts. However, people often disregard these floodgates’ potential interference with the natural water environment. This study focused on an urban floodgate-controlled reach and monitored the monthly data of four main pollutant indicators (TN, TP, CODMn, and NH3-N) from 2016 to 2018 at six fixed sampling points (S1–S6). The difference analysis and cluster analysis results indicated that floodgate adjustments were the dominant driving factor of water quality changes in the reach, with pollutant concentration differences observed between the floodgate opening and closing periods. The results of the Canadian Council of Ministers of the Environment Water Quality Index evaluation showed that the water quality of the floodgate-controlled reach was categorized as “marginal” or “poor”. It is particularly important to note that the concentration of nitrogen compounds exceeded the allowable limits. The results of the Mann–Kendall trend and time series analyses revealed an overall upward trend in NH3-N concentration and a localized upward trend in TP concentration and presented periodic concentration fluctuations of four pollutants (TN, TP, CODMn, and NH3-N). This study highlights that flood control management using small floodgates can pose a risk of deteriorating water quality. Therefore, it is necessary to develop scientific water quality management methods.
The Risk of Water Quality Deterioration with Urban Flood Control—A Case in Wuxi
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Water Treatment - Wuxi tap water quality improved
Online Contents | 2010
Online Contents | 2014
Source apportionment of ambient PM10 in urban areas of Wuxi, China
Springer Verlag | 2011
|Urbanizing China in war and peace : the case of Wuxi County
TIBKAT | 2015
|Water Quality Impacts on Urban Flood Plains
British Library Conference Proceedings | 1995
|