A platform for research: civil engineering, architecture and urbanism
Life Cycle Assessment of Nile Tilapia (Oreochromis niloticus) Farming in Kenyir Lake, Terengganu
This study presents results from a life cycle assessment (LCA) conducted following the CML-IA method on caged aquaculture of Nile tilapia (Oreochromis niloticus) species at Como River, Kenyir Lake, Terengganu, Malaysia. In this study, the greenhouse gas (GHG) estimation, calculated based on the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines, showed that 245.27 C eq (1.69 Kg) of nitrate oxide (N2O) was emitted from the lake. The determination of LCA was conducted using several inputs, namely N2O, compositions of fish feed, materials used to build fish cages (infrastructure), main materials used during operation and several databases, namely Agri-footprint, Ecoinvent 3, European Reference Life-Cycle Database (ELCD), and Industry Data 2.0. The results show that feed formulation is the major contributor to potential environmental impact in aquaculture farming, at 55%, followed by infrastructure at 33% and operation at 12%. The feed formulation consisting of 53% broken rice contributed to marine ecotoxicity (MET), while those consisting of 44% fish meal and 33% soybean meal contributed to abiotic depletion (ABD) and global warming (GW), respectively. It is recommended that the percentage of ingredients used in feed formulation in fish farming are further studied to reduce its impacts to the environment.
Life Cycle Assessment of Nile Tilapia (Oreochromis niloticus) Farming in Kenyir Lake, Terengganu
This study presents results from a life cycle assessment (LCA) conducted following the CML-IA method on caged aquaculture of Nile tilapia (Oreochromis niloticus) species at Como River, Kenyir Lake, Terengganu, Malaysia. In this study, the greenhouse gas (GHG) estimation, calculated based on the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines, showed that 245.27 C eq (1.69 Kg) of nitrate oxide (N2O) was emitted from the lake. The determination of LCA was conducted using several inputs, namely N2O, compositions of fish feed, materials used to build fish cages (infrastructure), main materials used during operation and several databases, namely Agri-footprint, Ecoinvent 3, European Reference Life-Cycle Database (ELCD), and Industry Data 2.0. The results show that feed formulation is the major contributor to potential environmental impact in aquaculture farming, at 55%, followed by infrastructure at 33% and operation at 12%. The feed formulation consisting of 53% broken rice contributed to marine ecotoxicity (MET), while those consisting of 44% fish meal and 33% soybean meal contributed to abiotic depletion (ABD) and global warming (GW), respectively. It is recommended that the percentage of ingredients used in feed formulation in fish farming are further studied to reduce its impacts to the environment.
Life Cycle Assessment of Nile Tilapia (Oreochromis niloticus) Farming in Kenyir Lake, Terengganu
Hayana Dullah (author) / M. A. Malek (author) / Marlia M. Hanafiah (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Nitrite-induced methemoglobinemia in Nile tilapia, Oreochromis niloticus
British Library Online Contents | 2006
|Food and Feeding Biology of Nile Tilapia (Oreochromis niloticus) in Lake Langeno, Ethiopia
DOAJ | 2022
|