A platform for research: civil engineering, architecture and urbanism
Numerical Study of Progressive Collapse in Intermediate Moment Resisting Reinforced Concrete Frame Due to Column Removal
Progressive collapse is a chain reaction of failures propagating throughout a portion of the structure disproportionate to the original local failure occurring when a sudden loss of a critical load‐bearing element initiates a structural element failure, eventually resulting in partial or full collapse of the structure. Both General Services Administration (GSA) and United States Department of Defense (DoD) guidelines incorporate a threat-independent approach to progressive collapse analysis. Therefore, there is an international trend for updating structural design requirements to explicitly design structures to resist progressive collapse. This paper presents simple analytical approach for evaluating progressive collapse potential of typical concrete buildings, comparing four methods for progressive collapse analysis by studying 5 and 10-story intermediate moment-resistant reinforced concrete frame buildings, employing increasingly more complex analytical procedures: linear-elastic static, nonlinear static, linear-elastic dynamic, and nonlinear dynamic methodologies. Each procedure is thoroughly investigated and its common shortcomings are identified. The evaluation uses current GSA progressive collapse guidelines and can be used in routine design by practicing engineers. These analyses for three column-removal conditions are performed to evaluate the behavior of RC buildings under progressive collapse. Based on obtained findings, dynamic analysis procedures -easy to perform for progressive collapse determination- yielded more accurate results.
Numerical Study of Progressive Collapse in Intermediate Moment Resisting Reinforced Concrete Frame Due to Column Removal
Progressive collapse is a chain reaction of failures propagating throughout a portion of the structure disproportionate to the original local failure occurring when a sudden loss of a critical load‐bearing element initiates a structural element failure, eventually resulting in partial or full collapse of the structure. Both General Services Administration (GSA) and United States Department of Defense (DoD) guidelines incorporate a threat-independent approach to progressive collapse analysis. Therefore, there is an international trend for updating structural design requirements to explicitly design structures to resist progressive collapse. This paper presents simple analytical approach for evaluating progressive collapse potential of typical concrete buildings, comparing four methods for progressive collapse analysis by studying 5 and 10-story intermediate moment-resistant reinforced concrete frame buildings, employing increasingly more complex analytical procedures: linear-elastic static, nonlinear static, linear-elastic dynamic, and nonlinear dynamic methodologies. Each procedure is thoroughly investigated and its common shortcomings are identified. The evaluation uses current GSA progressive collapse guidelines and can be used in routine design by practicing engineers. These analyses for three column-removal conditions are performed to evaluate the behavior of RC buildings under progressive collapse. Based on obtained findings, dynamic analysis procedures -easy to perform for progressive collapse determination- yielded more accurate results.
Numerical Study of Progressive Collapse in Intermediate Moment Resisting Reinforced Concrete Frame Due to Column Removal
Seyed Mehdi Zahrai (author) / Alireza Ezoddin (author)
2014
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Progressive Collapse of Moment Resisting Steel Frame Buildings
British Library Conference Proceedings | 2005
|Progressive collapse of regular and irregular reinforced concrete moment frame
DOAJ | 2019
|