A platform for research: civil engineering, architecture and urbanism
Optimization of Food Waste and Biochar In-Vessel Co-Composting
As bulking agents (BA) affect the composting process, this work examined the impact of combinations of different organic components in order to obtain an efficient co-substrate for food waste (FW) in-vessel composting. To boost the occurrence of microorganisms inhabiting the compost, mature compost was firstly coupled with wheat straw, added to FW, and considered as a control (BC0). Then, two trials (BC10, BC20) including 10% and 20% of biochar were monitored. The results indicated that the temperature of the amended bioreactors was notably increased compared to the unamended one. Thermophilic temperatures were achieved at 14, 34, and 78 h after the experimental setup for BC20, BC10, and BC0, which lasted for 14, 17, and 12 days, respectively. When it came to an assessment of maturity and stability, the quality of the compost was evaluated against several indicators and compared with the compost quality standards of the UK, France, Canada, the USA, Poland, and Germany. BC10 illustrated a high-quality product in relation to the heavy metal concentration, a C:N ratio which reached 14.97, an AT4 which was lower than 6 (4.36 mg O2/g TS), and a nitrification index of 2.61 (<3). Consequently, the addition of 10% of biochar as a co-substrate showed an improvement of the process evolution and the characteristics of the biofertilizer produced.
Optimization of Food Waste and Biochar In-Vessel Co-Composting
As bulking agents (BA) affect the composting process, this work examined the impact of combinations of different organic components in order to obtain an efficient co-substrate for food waste (FW) in-vessel composting. To boost the occurrence of microorganisms inhabiting the compost, mature compost was firstly coupled with wheat straw, added to FW, and considered as a control (BC0). Then, two trials (BC10, BC20) including 10% and 20% of biochar were monitored. The results indicated that the temperature of the amended bioreactors was notably increased compared to the unamended one. Thermophilic temperatures were achieved at 14, 34, and 78 h after the experimental setup for BC20, BC10, and BC0, which lasted for 14, 17, and 12 days, respectively. When it came to an assessment of maturity and stability, the quality of the compost was evaluated against several indicators and compared with the compost quality standards of the UK, France, Canada, the USA, Poland, and Germany. BC10 illustrated a high-quality product in relation to the heavy metal concentration, a C:N ratio which reached 14.97, an AT4 which was lower than 6 (4.36 mg O2/g TS), and a nitrification index of 2.61 (<3). Consequently, the addition of 10% of biochar as a co-substrate showed an improvement of the process evolution and the characteristics of the biofertilizer produced.
Optimization of Food Waste and Biochar In-Vessel Co-Composting
Nour El Houda Chaher (author) / Mehrez Chakchouk (author) / Nils Engler (author) / Abdallah Nassour (author) / Michael Nelles (author) / Moktar Hamdi (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Accelerated In-vessel Composting for Household Waste
Springer Verlag | 2017
|Evaluation of Biochar as an Additive in the Co-Composting of Green Waste and Food Waste
DOAJ | 2023
|FEATURES - Composting & organic waste treatment - Designing for large scale in-vessel composting
Online Contents | 2001
|Taylor & Francis Verlag | 2013
|