A platform for research: civil engineering, architecture and urbanism
Experimental Study and Extended Finite Element Simulation of Fracture of Self-Compacting Rubberized Concrete
Self-compacting rubberized concrete (SCRC) is a high-performance concrete that can achieve compacting effect by self-gravity without vibration during pouring. Because of its excellent fluidity, homogeneity, and stability, the application of self-compacting concrete in engineering can improve work efficiency and reduce project cost. The effects of loading rate on the fracture behavior of self-compacting concrete were studied in this paper. Three-point bend (TPB) tests were carried out at five loading rates of 1, 0.1, 0.001, 0.0001, and 0.00001 mm/s. The dimensions of the specimens were 100 mm × 100 mm × 400 mm. A precast crack was set in the middle of the specimen with a notch-depth ratio of 0.4. The experimental results show that the peak load on the load-CMOD (crack mouth opening displacement) curve gradually increases with the increase of the loading rate. Although the fracture energy a presented greater dispersion under the loading rate of 1 mm/s, the overall changes were still rising with the increase of the loading rate. Besides studying the softening characteristics of the self-compacting concrete, the constitutive softening curve of the self-compacting concrete was obtained using the bilinear model. Finally, curved three-point bending beams were simulated by using the extended finite element method based on ABAQUS. The fracture process of the self-compacting concrete under different loading conditions was analyzed more intuitively. The simulation results were compared with the experimental results, and the same conclusions were obtained.
Experimental Study and Extended Finite Element Simulation of Fracture of Self-Compacting Rubberized Concrete
Self-compacting rubberized concrete (SCRC) is a high-performance concrete that can achieve compacting effect by self-gravity without vibration during pouring. Because of its excellent fluidity, homogeneity, and stability, the application of self-compacting concrete in engineering can improve work efficiency and reduce project cost. The effects of loading rate on the fracture behavior of self-compacting concrete were studied in this paper. Three-point bend (TPB) tests were carried out at five loading rates of 1, 0.1, 0.001, 0.0001, and 0.00001 mm/s. The dimensions of the specimens were 100 mm × 100 mm × 400 mm. A precast crack was set in the middle of the specimen with a notch-depth ratio of 0.4. The experimental results show that the peak load on the load-CMOD (crack mouth opening displacement) curve gradually increases with the increase of the loading rate. Although the fracture energy a presented greater dispersion under the loading rate of 1 mm/s, the overall changes were still rising with the increase of the loading rate. Besides studying the softening characteristics of the self-compacting concrete, the constitutive softening curve of the self-compacting concrete was obtained using the bilinear model. Finally, curved three-point bending beams were simulated by using the extended finite element method based on ABAQUS. The fracture process of the self-compacting concrete under different loading conditions was analyzed more intuitively. The simulation results were compared with the experimental results, and the same conclusions were obtained.
Experimental Study and Extended Finite Element Simulation of Fracture of Self-Compacting Rubberized Concrete
Xinquan Wang (author) / Hongguo Diao (author) / Yunliang Cui (author) / Changguang Qi (author) / Shangyu Han (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Engineering properties of self-compacting rubberized concrete
British Library Online Contents | 2011
|Impact Resistance of Rubberized Self-Compacting Concrete
Taylor & Francis Verlag | 2015
|Flexural fatigue behavior of self compacting rubberized concrete
Elsevier | 2013
|Flexural fatigue behavior of self compacting rubberized concrete
Online Contents | 2013
|Flexural fatigue behavior of self compacting rubberized concrete
British Library Online Contents | 2013
|