A platform for research: civil engineering, architecture and urbanism
Streamlining Building Energy Modelling Using Open Access Databases—A Methodology towards Decarbonisation of Residential Buildings in Sweden
The building sector is a major contributor to greenhouse gases, consuming significant energy and available resources. Energy renovation of buildings is an effective strategy for decarbonisation, as it lowers operational energy and avoids the embodied impact of new constructions. To be successful, the energy renovation process requires meaningful building models. However, the time and costs associated with obtaining accurate data on existing buildings make large-scale evaluations unrealistic. This study proposes a methodology to streamline building energy models from open-access datasets for urban scalability. The methodology was tested on six case study buildings representing different typologies of the Swedish post-war construction period. The most promising results were obtained by coupling OpenStreetMap-sourced footprints with energy performance declarations and segmented archetypes for building characterisation. These significantly reduced simulation time while retaining similar accuracy. The suggested methodology streamlines building energy modelling with a promising degree of automation and without the need for input from the user. The study concludes that municipalities and building owners could use a such methodology to develop roadmaps for cities to achieve carbon neutrality and evaluate energy renovation solutions. Future work includes achieving higher accuracy of the generated energy models through calibration, performing renovation analysis, and upscaling from individual buildings to neighbourhoods.
Streamlining Building Energy Modelling Using Open Access Databases—A Methodology towards Decarbonisation of Residential Buildings in Sweden
The building sector is a major contributor to greenhouse gases, consuming significant energy and available resources. Energy renovation of buildings is an effective strategy for decarbonisation, as it lowers operational energy and avoids the embodied impact of new constructions. To be successful, the energy renovation process requires meaningful building models. However, the time and costs associated with obtaining accurate data on existing buildings make large-scale evaluations unrealistic. This study proposes a methodology to streamline building energy models from open-access datasets for urban scalability. The methodology was tested on six case study buildings representing different typologies of the Swedish post-war construction period. The most promising results were obtained by coupling OpenStreetMap-sourced footprints with energy performance declarations and segmented archetypes for building characterisation. These significantly reduced simulation time while retaining similar accuracy. The suggested methodology streamlines building energy modelling with a promising degree of automation and without the need for input from the user. The study concludes that municipalities and building owners could use a such methodology to develop roadmaps for cities to achieve carbon neutrality and evaluate energy renovation solutions. Future work includes achieving higher accuracy of the generated energy models through calibration, performing renovation analysis, and upscaling from individual buildings to neighbourhoods.
Streamlining Building Energy Modelling Using Open Access Databases—A Methodology towards Decarbonisation of Residential Buildings in Sweden
Rafael Campamà Pizarro (author) / Ricardo Bernardo (author) / Maria Wall (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Energy efficiency of new residential buildings in sweden : Design and Modelling Aspects
BASE | 2014
|Roadmaps : a platform for stakeholder connectivity towards decarbonisation of the buildings sector
BASE | 2020
|